Skip to main content

General Aspects of Thermodynamical Modeling

  • Chapter
  • First Online:
Solving Problems in Thermal Engineering

Part of the book series: Power Systems ((POWSYS))

  • 604 Accesses

Abstract

Solving a thermal problem means a solution of a mathematical model that governs the process and describes its time evolution. The thermodynamic background of these mathematical models is discussed in the present chapter. There are two building blocks of such a model. The first block consists the well-known balance equations such as the mass, momentum, and energy. The second one is the so-called constitutive relation, which tells us ‘how a material behaves’. This chapter is about their thermodynamic background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note here that there are so-called ‘regularization techniques’ which stabilize the behavior and yield parabolic models [10].

  2. 2.

    Or using the usual convention: ‘ordinary’ thermodynamics which is about to describe the time evolution without considering any spatial dependence.

  3. 3.

    Only when the internal moment of momenta is absent.

  4. 4.

    Strictly speaking, it is meaningless in a mathematical sense until the definition of a ‘distance’ is given, measuring the ‘interval’ between states in which one is related to equilibrium state.

  5. 5.

    In a more general situation, the mass density \(\rho \) is also present, i.e., \(e=e(T,\rho )\).

  6. 6.

    From a practical point of view, neglecting the T-dependence of \(\lambda \) depends on the material, and theoretically, Eq. (13) is a better model for low temperature situations.

  7. 7.

    We note here that a different representation is also possible since the \(\nabla \frac{1}{T}\) terms can be unified. In this way, the resulting coefficients will be different, too [27].

  8. 8.

    We note that this identification of fluxes and forces is not unique, and it affects the definitions of material parameters.

References

  1. T. Matolcsi, Ordinary Thermodynamics (Akadémiai Kiadó, Budapest, 2004)

    MATH  Google Scholar 

  2. I. Gyarmati, Non-Equilibrium Thermodynamics (Springer, Berlin, 1970)

    Book  Google Scholar 

  3. A. Berezovski, P. Ván, Internal Variables in Thermoelasticity (Springer, Berlin, 2017)

    Book  MATH  Google Scholar 

  4. J. Verhás, Thermodynamics and Rheology (Akadémiai Kiadó-Kluwer Academic Publisher, Dordrecht, 1997)

    MATH  Google Scholar 

  5. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover Publications, Mineola, 1963)

    MATH  Google Scholar 

  6. D. Jou, J. Casas-Vázquez, G. Lebon, Extended Irreversible Thermodynamics, 4th edn. (Springer, New York, 2010)

    Book  MATH  Google Scholar 

  7. I. Müller, T. Ruggeri, Rational Extended Thermodynamics (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  8. D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics. Rep. Prog. Phys. 51(8), 1105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  10. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, Berlin, 2005)

    Book  MATH  Google Scholar 

  11. T. Matolcsi, P. Ván, Can material time derivative be objective? Phys. Lett. A 353(2), 109–112 (2006)

    Article  Google Scholar 

  12. R. Kovács, P. Ván, Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  13. G. Vayakis, T. Sugie, T. Kondoh, T. Nishitani, E. Ishitsuka, M. Yamauchi, H. Kawashima, T. Shikama, Radiation-induced thermoelectric sensitivity (RITES) in ITER prototype magnetic sensors. Rev. Sci. Instrum. 75(10), 4324–4327 (2004)

    Article  Google Scholar 

  14. A. Loarte, G. Saibene, R. Sartori, V. Riccardo, P. Andrew, J. Paley, W. Fundamenski, T. Eich, A. Herrmann, G. Pautasso et al., Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation. Phys. Scr. 2007(T128), 222 (2007)

    Article  Google Scholar 

  15. B. Smith, P.P.H. Wilson, M.E. Sawan, Three dimensional neutronics analysis of the ITER first wall/shield module 13, in 2007 IEEE 22nd Symposium on Fusion Engineering (IEEE, 2007), pp. 1–4

    Google Scholar 

  16. A. Huber, A. Arakcheev, G. Sergienko, I. Steudel, M. Wirtz, A.V. Burdakov, J.W. Coenen, A. Kreter, J. Linke, Ph Mertens et al., Investigation of the impact of transient heat loads applied by laser irradiation on iter-grade tungsten. Phys. Scr. 2014(T159), 014005 (2014)

    Article  Google Scholar 

  17. Yi Zhu, Liu Hong, Zaibao Yang, Wen-An Yong, Conservation-dissipation formalism of irreversible thermodynamics. J. Non-Equilib. Thermodyn. 40(2), 67–74 (2015)

    Article  Google Scholar 

  18. Lars Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405 (1931)

    Article  MATH  Google Scholar 

  19. Lars Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265 (1931)

    Article  MATH  Google Scholar 

  20. V.A. Cimmelli, D. Jou, T. Ruggeri, P. Ván, Entropy principle and recent results in non-equilibrium theories. Entropy 16(3), 1756–1807 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Fülöp, P. Ván, A. Csatár, Elasticity, plasticity, rheology and thermal stres–an irreversible thermodynamical theory. Elastic 2(7) (2013)

    Google Scholar 

  22. T. Fülöp, Cs. Asszonyi, P. Ván, Distinguished rheological models in the framework of a thermodynamical internal variable theory. Contin. Mech. Thermodyn. 27(6), 971–986 (2015)

    Google Scholar 

  23. T. Fülöp, Objective Thermomechanics (2015). arXiv:1510.08038

  24. C. Asszonyi, A. Csatár, T. Fülöp, Elastic, thermal expansion, plastic and rheological processes-theory and experiment (2015). arXiv:1512.05863

  25. T. Fülöp, R. Kovács, Á. Lovas, Á. Rieth, T. Fodor, M. Szücs, P. Ván, Gy. Gróf, Emergence of non-Fourier hierarchies. Entropy 20(11), 832 (2018). arXiv:1808.06858

    Article  Google Scholar 

  26. S. Kjelstrup, D. Bedeaux, Non-Equilibrium Thermodynamics of Heterogeneous Systems, vol. 16 (World Scientific, Singapore, 2008)

    Book  MATH  Google Scholar 

  27. P. Ván, R. Kovács, Variational principles and thermodynamics (2019). Submitted arxiv:1908.02679

  28. G. Fichera, Is the Fourier theory of heat propagation paradoxical? Rendiconti del Circolo Matematico di Palermo 41(1), 5–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Lebon, From classical irreversible thermodynamics to extended thermodynamics. Acta Phys. Hung. 66(1–4), 241–249 (1989)

    Google Scholar 

  30. D. Jou, J. Casas-Vazquez, G. Lebon, Extended irreversible thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(7), 1035 (1999)

    Article  MathSciNet  Google Scholar 

  31. G. Lebon, Heat conduction at micro and nanoscales: a review through the prism of extended irreversible thermodynamics. J. Non-Equilib. Thermodyn. 39(1), 35–59 (2014)

    Article  Google Scholar 

  32. V. Ciancio, L. Restuccia, On heat equation in the framework of classic irreversible thermodynamics with internal variables. Int. J. Geom. Methods Mod. Phys. 13(08), 1640003 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Ruggeri, M. Sugiyama, Rational Extended Thermodynamics Beyond the Monatomic Gas (Springer, Berlin, 2015)

    Book  MATH  Google Scholar 

  34. B. Nyíri. On the extension of the governing principle of dissipative processes to nonlinear constitutive equations. Acta Phys. Hung. 66(1), 19–28 (1989)

    Google Scholar 

  35. B. Nyíri, On the entropy current. J. Non-Equilib. Thermodyn. 16(2), 179–186 (1991)

    Article  Google Scholar 

  36. V. Ciancio, V.A. Cimmelli, P. Ván, On the evolution of higher order fluxes in non-equilibrium thermodynamics. Math. Comput. Model. 45, 126–136 (2007). arXiv:cond-mat/0407530

    Article  MathSciNet  MATH  Google Scholar 

  37. V.A. Cimmelli, Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34(4), 299–333 (2009)

    Article  MATH  Google Scholar 

  38. V.A. Cimmelli, P. Ván, The effects of nonlocality on the evolution of higher order fluxes in nonequilibrium thermodynamics. J. Math. Phys. 46(11), 112901 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Sellitto, V.A. Cimmelli, D. Jou, Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6 (Springer, Berlin, 2016)

    Book  MATH  Google Scholar 

  40. D. Jou, V.A. Cimmelli, Constitutive equations for heat conduction in nanosystems and non-equilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016)

    MathSciNet  MATH  Google Scholar 

  41. A. Sellitto, V.A. Cimmelli, D. Jou, Nonequilibrium thermodynamics and heat transport at nanoscale, in Mesoscopic Theories of Heat Transport in Nanosystems (Springer International Publishing, Berlin, 2016), pp. 1–30

    Chapter  MATH  Google Scholar 

  42. R. Kovács, D. Madjarevic, S. Simic, P. Ván, Theories of rarefied gases (2018). Submitted arXiv:1812.10355

  43. P. Rogolino, R. Kovács, P. Ván, V.A. Cimmelli, Generalized heat-transport equations: parabolic and hyperbolic models. Contin. Mech. Thermodyn. 30, AiP–14 (2018)

    Article  MathSciNet  Google Scholar 

  44. H.C. Öttinger, Beyond Equilibrium Thermodynamics (Wiley, Berlin, 2005)

    Book  Google Scholar 

  45. M. Grmela, H.C. Öttinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620 (1997)

    Article  MathSciNet  Google Scholar 

  46. H.C. Öttinger, M. Grmela, Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633 (1997)

    Article  MathSciNet  Google Scholar 

  47. M. Pavelka, V. Klika, M. Grmela, Multiscale Thermo-Dynamics: Introduction to GENERIC (Walter de Gruyter GmbH & Co KG, Berlin, 2018)

    Book  MATH  Google Scholar 

  48. M. Grmela, M. Pavelka, V. Klika, B.-Y. Cao, N. Bendian, Entropy and entropy production in multiscale dynamics. J. Non-Equilib. Thermodyn. (2019). Online first

    Google Scholar 

  49. M. Grmela, L. Restuccia, Nonequilibrium temperature in the multiscale dynamics and thermodynamics. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 97(S1), 8 (2019)

    Google Scholar 

  50. P.C. Hohenberg, B.I. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys. 49(3), 435–479 (1977)

    Article  Google Scholar 

  51. O. Penrose, P.C. Fife, On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model. Phys. D 69, 107–113 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. L.-Q. Chen, Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  53. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  54. I. Gyarmati, On the wave approach of thermodynamics and some problems of non-linear theories. J. Non-Equilib. Thermodyn. 2, 233–260 (1977)

    Article  MATH  Google Scholar 

  55. A. Sellitto, V. Tibullo, Y. Dong, Nonlinear heat-transport equation beyond Fourier law: application to heat-wave propagation in isotropic thin layers. Contin. Mech. Thermodyn. 29(2), 411–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Hai-Dong Wang, Bing-Yang Cao, Zeng-Yuan Guo, Non-Fourier heat conduction in carbon nanotubes. J. Heat Transf. 134(5), 051004 (2012)

    Article  Google Scholar 

  57. Ben-Dian Nie, Bing-Yang Cao, Three mathematical representations and an improved ADI method for hyperbolic heat conduction. Int. J. Heat Mass Transf. 135, 974–984 (2019)

    Article  Google Scholar 

  58. V. Peshkov, Second sound in helium II. J. Phys. (Moscow) 381(8) (1944)

    Google Scholar 

  59. L. Tisza, Transport phenomena in Helium II. Nature 141, 913 (1938)

    Article  Google Scholar 

  60. L. Tisza, The theory of liquid Helium. Phys. Rev. 72(9), 838–877 (1947)

    Article  Google Scholar 

  61. L. Landau, On the theory of superfluidity of Helium II. J. Phys. 11(1), 91–92 (1947)

    MathSciNet  Google Scholar 

  62. R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766–778 (1966)

    Article  Google Scholar 

  63. R.A. Guyer, J.A. Krumhansl, Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148(2), 778–788 (1966)

    Article  Google Scholar 

  64. D.Y. Tzou, Macro- to Micro-scale Heat Transfer: The Lagging Behavior (CRC Press, Boca Raton, 1996)

    Google Scholar 

  65. R. Kovács, P. Ván, Thermodynamical consistency of the Dual Phase Lag heat conduction equation. Contin. Mech. Thermodyn. 1–8 (2017)

    Google Scholar 

  66. M. Fabrizio, B. Lazzari, V. Tibullo, Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J. Non-Equilib. Thermodyn. (2017)

    Google Scholar 

  67. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 78, 58–63 (2014)

    Article  Google Scholar 

  68. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations. Int. J. Therm. Sci. 113, 83–88 (2017)

    Article  Google Scholar 

  69. P. Ván, A. Berezovski, J. Engelbrecht, Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn. 33(3), 235–254 (2008)

    Article  MATH  Google Scholar 

  70. C. D’Apice, S. Chirita, V. Zampoli, On the well-posedness of the time-differential three-phase-lag thermoelasticity model. Arch. Mech. 68(5) (2016)

    Google Scholar 

  71. S. Chirita, V. Zampoli, Spatial behavior of the dual-phase-lag deformable conductors. J. Therm. Stress. 41(10–12), 1276–1296 (2018)

    Article  Google Scholar 

  72. V. Zampoli, Uniqueness theorems about high-order time differential thermoelastic models. Ricerche di Matematica 67(2), 929–950 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. D. Jou, C. Perez-Garcia, L.S. Garcia-Colin, M.L. De Haro, R.F. Rodriguez, Generalized hydrodynamics and extended irreversible thermodynamics. Phys. Rev. A 31(4), 2502 (1985)

    Article  Google Scholar 

  74. G. Lebon, A. Cloot, Propagation of ultrasonic sound waves in dissipative dilute gases and extended irreversible thermodynamics. Wave Motion 11, 23–32 (1989)

    Article  MATH  Google Scholar 

  75. A. Sellitto, V.A. Cimmelli, D. Jou, Entropy flux and anomalous axial heat transport at the nanoscale. Phys. Rev. B (87), 054302 (2013)

    Google Scholar 

  76. V. Ciancio, L. Restuccia, A derivation of a Guyer-Krumhansl type temperature equation in classical irreversible thermodynamics with internal variables. Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali 97(S1), 5 (2019)

    Google Scholar 

  77. S. Both, B. Czél, T. Fülöp, Gy. Gróf, Á. Gyenis, R. Kovács, P. Ván, J. Verhás, Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41(1), 41–48 (2016)

    Google Scholar 

  78. P. Ván, A. Berezovski, T. Fülöp, Gy. Gróf, R. Kovács, Á. Lovas, J. Verhás. Guyer-Krumhansl-type heat conduction at room temperature. EPL 118(5), 50005 (2017). arXiv:1704.00341v1

    Article  Google Scholar 

  79. M. Calvo-Schwarzwälder, T.G. Myers, M.G. Hennessy, The one-dimensional Stefan problem with non-Fourier heat conduction (2019). arXiv:1905.06320

  80. M.G. Hennessy, M. Calvo-Schwarzwälder, T.G. Myers, Modelling ultra-fast nanoparticle melting with the Maxwell-Cattaneo equation. Appl. Math. Model. 69, 201–222 (2019)

    Article  MathSciNet  Google Scholar 

  81. M.G. Hennessy, M.C. Schwarzwälder, T.G. Myers, Asymptotic analysis of the Guyer-Krumhansl-Stefan model for nanoscale solidification. Appl. Math. Model. 61, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  82. T.F. McNelly, Second sound and anharmonic processes in isotopically pure Alkali-Halides. Ph.D. Thesis, Cornell University (1974)

    Google Scholar 

  83. H.E. Jackson, C.T. Walker, T.F. McNelly, Second sound in NaF. Phys. Rev. Lett. 25(1), 26–28 (1970)

    Article  Google Scholar 

  84. H.E. Jackson, C.T. Walker, Thermal conductivity, second sound and phonon-phonon interactions in NaF. Phys. Rev. B 3(4), 1428–1439 (1971)

    Article  Google Scholar 

  85. W. Dreyer, H. Struchtrup, Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  MathSciNet  Google Scholar 

  86. T.F. McNelly, S.J. Rogers, D.J. Channin, R.J. Rollefson, W.M. Goubau, G.E. Schmidt, J.A. Krumhansl, R.O. Pohl, Heat pulses in NaF: onset of second sound. Phys. Rev. Lett. 24(3), 100–102 (1970)

    Article  Google Scholar 

  87. V. Narayanamurti, R.C. Dynes, Ballistic phonons and the transition to second sound in solid \(^{3}\)He and \(^{4}\)He. Phys. Rev. B 12(5), 1731–1738 (1975)

    Article  Google Scholar 

  88. F.X. Alvarez, D. Jou, Memory and nonlocal effects in heat transport: from diffusive to ballistic regimes. Appl. Phys. Lett. 90(8), 083109 (2007)

    Article  Google Scholar 

  89. Y. Ma, A transient ballistic-diffusive heat conduction model for heat pulse propagation in nonmetallic crystals. Int. J. Heat Mass Transf. 66, 592–602 (2013)

    Article  Google Scholar 

  90. Y. Ma, A hybrid phonon gas model for transient ballistic-diffusive heat transport. J. Heat Transf. 135(4), 044501 (2013)

    Article  Google Scholar 

  91. Yu-Chao Hua, Bing-Yang Cao, Slip boundary conditions in ballistic-diffusive heat transport in nanostructures. Nanoscale Microscale Thermophys. Eng. 21(3), 159–176 (2017)

    Article  Google Scholar 

  92. Dao-Sheng Tang, Bing-Yang Cao, Superballistic characteristics in transient phonon ballistic-diffusive transport. Appl. Phys. Lett. 111(11), 113109 (2017)

    Article  Google Scholar 

  93. Han-Ling Li, Bing-Yang Cao, Radial ballistic-diffusive heat conduction in nanoscale. Nanoscale Microscale Thermophys. Eng. 23(1), 10–24 (2019)

    Article  MathSciNet  Google Scholar 

  94. A. Famá, L. Restuccia, P. Ván, Generalized ballistic-conductive heat conduction in isotropic materials (2019). arXiv:1902.10980

  95. R. Kovács, P. Ván, Models of Ballistic propagation of heat at low temperatures. Int. J. Thermophys. 37(9), 95 (2016)

    Article  Google Scholar 

  96. R. Kovács, P. Ván, Second sound and ballistic heat conduction: NaF experiments revisited. Int. J. Heat Mass Transf. 117, 682–690 (2018). arXiv:1708.09770

    Article  Google Scholar 

  97. D. Jou, J. Camacho, M. Grmela, On the nonequilibrium thermodynamics of non-Fickian diffusion. Macromolecules 24(12), 3597–3602 (1991)

    Article  Google Scholar 

  98. H. Struchtrup, Resonance in rarefied gases. Contin. Mech. Thermodyn. 24(4–6), 361–376 (2012)

    Article  MathSciNet  Google Scholar 

  99. T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24(4–6), 271–292 (2012)

    Article  MATH  Google Scholar 

  100. V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, Rarefaction effects on gas viscosity in the Knudsen transition regime. Microfluid. Nanofluidics 9(4–5), 847–853 (2010)

    Article  Google Scholar 

  101. A. Van Itterbeek, A. Claes, Measurements on the viscosity of hydrogen-and deuterium gas between 293 K and 14 K. Physica 5(10), 938–944 (1938)

    Article  Google Scholar 

  102. A. Van Itterbeek, W.H. Keesom, Measurements on the viscosity of helium gas between 293 and 1.6 k. Physica 5(4), 257–269 (1938)

    Article  Google Scholar 

  103. A. Van Itterbeek, O. Van Paemel, Measurements on the viscosity of gases for low pressures at room temperature and at low temperatures. Physica 7(3), 273–283 (1940)

    Article  Google Scholar 

  104. A. Michels, A.C.J. Schipper, W.H. Rintoul, The viscosity of hydrogen and deuterium at pressures up to 2000 atmospheres. Physica 19(1–12), 1011–1028 (1953)

    Article  Google Scholar 

  105. J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of nitrogen, helium, hydrogen, and argon from \(-\)100 to 25 c up to 150–250 atmospheres. Project SQUID Technical Report (1969), p. 33

    Google Scholar 

  106. J.A. Gracki, G.P. Flynn, J. Ross, Viscosity of nitrogen, helium, hydrogen, and argon from \(-\)100 to 25 c up to 150–250 atm. J. Chem. Phys. 9, 3856–3863 (1969)

    Article  Google Scholar 

  107. T. Fülöp, M. Szücs, Analytical solution method for rheological problems of solids (2018). arXiv:1810.06350

  108. M. Szücs, T. Fülöp, Kluitenberg-Verhás rheology of solids in the GENERIC framework. J. Non-Equilib. Thermodyn. 44(3), 247–259 (2019). arXiv:1812.07052

    Article  Google Scholar 

  109. L. Écsi, P. Ván, T. Fülöp, B. Fekete, P. Élesztős, R. Janco, A thermoelastoplastic material model for finite-strain cyclic plasticity of metals (2017). arXiv:1709.05416

  110. J. Mewis, N.J. Wagner, Colloidal Suspension Rheology (Cambridge University Press, Cambridge, 2012)

    MATH  Google Scholar 

  111. R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow and Applied Rheology: Engineering Applications (Butterworth-Heinemann, Oxford, 2011)

    Google Scholar 

  112. ET Science Team. Einstein gravitational wave telescope, conceptual design study. Technical Report ET-0106C-10 (2011). http://www.et-gw.eu/etdsdocument

  113. G.G. Barnaföldi, T. Bulik, M. Cieslar, E. Dávid, M. Dobróka, E. Fenyvesi, D. Gondek-Rosinska, Z. Gráczer, G. Hamar, G. Huba et al., First report of long term measurements of the MGGL laboratory in the Mátra mountain range. Class. Quantum Gravity 34(11), 114001 (2017)

    Article  Google Scholar 

  114. P. Ván, G.G. Barnaföldi, T. Bulik, T. Biró, S. Czellár, M. Cieślar, Cs. Czanik, E. Dávid, E. Debreceni, M. Denys et al., Long term measurements from the Mátra gravitational and geophysical laboratory (2018). arXiv:1811.05198

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Józsa .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Józsa, V., Kovács, R. (2020). General Aspects of Thermodynamical Modeling. In: Solving Problems in Thermal Engineering. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-33475-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33475-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33474-1

  • Online ISBN: 978-3-030-33475-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics