Rethinking Input-Output Analysis pp 19-39 | Cite as
Data Construction: From IO Tables to Supply-Use Models
- 198 Downloads
Abstract
An overview of non-survey construction methods for regional input–output tables (RIOTs) reveals a systematic overestimation of regional multipliers. The iterative bi-proportional scaling method RAS avoids this problem if it is fed with intra-regional row and column totals without a systematic bias. The Cell-Corrected RAS method, additionally, takes advantage of the multitude of survey-based RIOTs to improve the intra-regional cell estimates of unknown RIOTs. Next, it is shown how a semi-survey bi-regional IOT may be constructed with a double-entry construction method that requires only minimal survey data about the spatial destination of the sales by the regional industry. Finally, product-by-industry, national and interregional supply-use tables (SUTs) are introduced, along with the models based on them, and the assumptions needed to construct them.
Keywords
Location quotient methods Cross-hauling Cell-Corrected RAS Bi-regional input–output table Supply-use table Product technology assumption Industry sales structure assumption Interregional supply-use model International input–output tablesReferences
- Bacharach M (1970) Biproportional matrices and input-output change. Cambridge University Press, CambridgeGoogle Scholar
- Batten D (1983) Spatial analysis of interacting economies. Kluwer-Nijhoff, BostonCrossRefGoogle Scholar
- Boomsma P, Oosterhaven J (1992) A double-entry method for the construction of bi-regional input-output tables. J Reg Sci 32:269–284CrossRefGoogle Scholar
- Bourque PJ, Conway RS (1977) The 1972 Washington input-output study. Graduate School of Business Administration, SeattleGoogle Scholar
- Bouwmeester MC (2014) Economics and environment—modelling global linkages. Dissertation, SOM Research School, University of GroningenGoogle Scholar
- Burford RL, Katz JL (1981) A method for estimation of input-output-type output multipliers when no I-O model exists. J Reg Sci 21:151–1621CrossRefGoogle Scholar
- Czamanski S, Malizia E (1969) Applicability and limitations in the use of national input-output tables for regional studies. Pap Reg Sci 23:65–78CrossRefGoogle Scholar
- de Mesnard L (2004) Understanding the shortcomings of commodity-based technology in input-output models: an economic circuit approach. J Reg Sci 44:125–141CrossRefGoogle Scholar
- de Mesnard L (2011) Negatives in symmetric input–output tables: the impossible quest for the Holy Grail. Ann Reg Sci 46:427–454CrossRefGoogle Scholar
- Dietzenbacher E, Los B, Stehrer R, Timmer M, de Vries G (2013) The construction of world input-output tables in the WIOD project. Econ Syst Res 25:71–98CrossRefGoogle Scholar
- Eurostat (2008) Eurostat manual on supply, use and input-output tables. European Communities, LuxemburgGoogle Scholar
- Flegg AT, Webber CB, Elliot MV (1995) On the appropriate use of location quotients in generating regional input-output tables. Reg Stud 29:547–561CrossRefGoogle Scholar
- Flegg AT, Huang Y, Tohmo T (2015) Using charm to adjust for cross-hauling: the case of the province of Hubei, China. Econ Syst Res 27:391–413CrossRefGoogle Scholar
- Gigantes T (1970) The representation of technology in input-output systems. In: Carter AP, Bródy A (eds) Contributions to input-output analysis. North-Holland, AmsterdamGoogle Scholar
- Hewings GJD (1977) Evaluating the possibilities for exchanging regional input-output coefficients. Environ Plan A 9:927–944CrossRefGoogle Scholar
- Hewings GJD, Janson BN (1980) Exchanging regional input-output coefficients: a reply and further comments. Environ Plan A 12:843–854CrossRefGoogle Scholar
- Hoen AR, Oosterhaven J (2006) On the measurement of comparative advantage. Ann Reg Sci 40:677–691CrossRefGoogle Scholar
- Isard W, Langford TW (1971) Regional input-output study: recollections, reflections and diverse notes on the Philadelphia experience. M.I.T Press, CambridgeGoogle Scholar
- Jackson RW, Schwarm WR (2011) Accounting foundations for interregional commodity-by-industry input-output models. Lett Spat Resour Sci 4:187–196CrossRefGoogle Scholar
- Jansen PK, ten Raa T (1990) The choice of model in the construction of input-output coefficients matrices. Int Econ Rev 31:31–45CrossRefGoogle Scholar
- Jensen RC, Hewings GJD (1985) Shortcut ‘input-output’ multipliers: a requiem. Environ Plan A 17:747–759CrossRefGoogle Scholar
- Junius T, Oosterhaven J (2003) The solution of updating or regionalizing a matrix with both positive and negative entries. Econ Syst Res 15:87–96CrossRefGoogle Scholar
- Kronenberg T (2009) Construction of regional input-output tables using nonsurvey methods: the role of cross-hauling. Int Reg Sci Rev 32:40–64CrossRefGoogle Scholar
- Kullback S (1959) Information theory and statistics. Wiley, New YorkGoogle Scholar
- Lahr ML (1993) A review of literature supporting the hybrid approach to constructing regional input-output models. Econ Syst Res 5:277–293CrossRefGoogle Scholar
- Lenzen M, Gallego B, Wood R (2009) Matrix balancing under conflicting information. Econ Syst Res 21:23–44CrossRefGoogle Scholar
- Lenzen M, Moran D, Kanemoto K, Geschke A (2013) Building EORA: a global multi-region input-output database at high country and sector resolution. Econ Syst Res 25:20–49CrossRefGoogle Scholar
- Madsen B, Jensen-Butler C (1999) Make and use approaches to regional and interregional accounts and models. Econ Syst Res 11:277–299CrossRefGoogle Scholar
- Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
- Minguez R, Oosterhaven J, Escobedo F (2009) Cell-Corrected RAS method (CRAS) for updating or regionalizing an input-output matrix. J Reg Sci 49:329–348CrossRefGoogle Scholar
- Oosterhaven J (1984) A family of square and rectangular interregional input-output tables and models. Reg Sci Urban Econ 14:565–582CrossRefGoogle Scholar
- Oosterhaven J, Escobedo-Cardeñoso F (2011) A new method to estimate input-output tables by means of structural lags, tested on Spanish regions. Pap Reg Sci 60:829–845CrossRefGoogle Scholar
- Oosterhaven J, Polenske KR, Hewings GJD (2019) Modern regional input-output and impact analysis. In: Capello R, Nijkamp P (eds) Handbook of regional growth and development theories: revised and extended, 2nd edn. Edward Elgar, CheltenhamGoogle Scholar
- Round JI (1983) Non-survey techniques: a critical review of the theory and the evidence. Int Reg Sci Rev 8:189–212CrossRefGoogle Scholar
- Rueda-Cantuche JM (2017) The construction of input-output coefficients. In: ten Raa T (ed) Handbook of input-output analysis. Edward Elgar, CheltenhamGoogle Scholar
- Rueda-Cantuche JM, ten Raa T (2009) The choice of model in the construction of industry input-output coefficient matrices. Econ Syst Res 21:363–376CrossRefGoogle Scholar
- Sawyer CH, Miller RE (1983) Experiments in the regionalization of national input-output table. Environ Plan A 15:1501–1520CrossRefGoogle Scholar
- Schaffer W, Chu K (1969) Nonsurvey techniques for constructing regional interindustry models. Pap Reg Sci 23:83–104CrossRefGoogle Scholar
- Stevens BH, Trainer GA (1980) Error generation in regional input-output analysis and its implications for nonsurvey models. In: Pleeter SP (ed) Economic impact analysis: methodology and applications. Martinus Nijhoff, BostonGoogle Scholar
- Stevens BH, Treyz GI, Lahr ML (1989) On the comparative accuracy of RPC estimation techniques. In: Miller RE, Polenske KR, Rose AZ (eds) Frontiers of input-output analysis. Oxford University Press, New YorkGoogle Scholar
- Stone R (1961) Input-output and national accounts. Organization for European Economic Cooperation, ParisGoogle Scholar
- Stone R, Brown A (1962) A computable model of economic growth. In: A programme for growth, vol. 1. Chapman and Hall, LondonGoogle Scholar
- Temurshoev U, Miller RE, Bouwmeester MC (2013) A note on the GRAS method. Econ Syst Res 25:361–367CrossRefGoogle Scholar
- ten Raa T, Rueda-Cantuche JM (2003) The construction of input-output coefficient matrices in an axiomatic context: some further considerations. Econ Syst Res 14:439–455Google Scholar
- Theil H (1967) Economics and information theory. North-Holland, AmsterdamGoogle Scholar
- Thomo T (2004) New developments in the use of location quotients to estimate regional input-output coefficients and multipliers. Reg Stud 38:43–54CrossRefGoogle Scholar
- Többen J (2017a) Effects of energy- and climate policy in Germany: a multiregional analysis. Dissertation, SOM research school, University of GroningenGoogle Scholar
- Többen J (2017b) On the simultaneous estimation of physical and monetary commodity flows. Econ Syst Res 29:1–24CrossRefGoogle Scholar
- Többen J, Kronenberg TH (2015) Construction of multi-regional input–output tables using the charm method. Econ Syst Res 27:487–507CrossRefGoogle Scholar
- Tukker A, De Koning A, Wood R, Hawkins T, Lutter S, Acosta J, Rueda-Cantuche JM, Bouwmeester MC, Oosterhaven J, Drosdowski T, Kuenen J (2013) Exiopol—development and illustrative analyses of a detailed global MR EE SUT/IOT. Econ Syst Res 25:50–70CrossRefGoogle Scholar
- van der Linden JA, Oosterhaven J (1995) European community intercountry input-output relations: construction method and main results for 1965–1985. Econ Syst Res 7:249–269CrossRefGoogle Scholar
- West GR (1990) Regional trade estimation: a hybrid approach. Int Reg Sc Rev 13:103–118CrossRefGoogle Scholar
- Willis KG (1987) Spatially disaggregated input-output tables: an evaluation and comparison of survey and non-survey results. Environ Plan A 19:107–116CrossRefGoogle Scholar