Skip to main content

Improving Maize Trait through Modifying Combination of Genes

  • Chapter
  • First Online:
Statistical Modeling in Biomedical Research

Abstract

In molecular breeding, trait improvement has been focused on exploring genetic variations of single genes. To explore the potential of modifying multiple genes simultaneously for trait improvement, we developed a systematic computational method aiming at detecting complex traits associated with gene interactions using a combination of gene expression and trait data across a set of maize hybrids. This method represents changes of expression patterns in a gene pair in uniform statistics and employs network topology to describe the inherent genotype-phenotype associations at the systems level. We applied and evaluated our method on several phenotypic traits measured on a set of maize hybrids across 2 years (2013 and 2014) and achieved consistent and biologically meaningful results. Our results provide a subset of candidate gene pairs that have the potential to improve several specific traits by gene expression enhancement or silence. Our work partially addresses the “missing heritability” problem in complex traits and offers an alternative way for improving crop traits via modifying a combination of multiple loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandratos, N., Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. In: ESA Working Paper Rome, FAO.

    Google Scholar 

  2. Tokatlidis, I., & Koutroubas, S. (2004). A review of maize hybrids’ dependence on high plant populations and its implications for crop yield stability. Field Crops Research, 88(2), 103–114.

    Article  Google Scholar 

  3. Tollenaar, M., & Wu, J. (1999). Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science, 39(6), 1597–1604.

    Article  Google Scholar 

  4. Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One, 8(6), e66428.

    Article  Google Scholar 

  5. Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E., & Doebley, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences, 99(9), 6080–6084.

    Article  Google Scholar 

  6. Doust, A. N., Lukens, L., Olsen, K. M., Mauro-Herrera, M., Meyer, A., & Rogers, K. (2014). Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proceedings of the National Academy of Sciences, 111(17), 6178–6183.

    Article  Google Scholar 

  7. Bhattacharyya, M., & Bandyopadhyay, S. (2013). Studying the differential co-expression of microRNAs reveals significant role of white matter in early Alzheimer’s progression. Molecular BioSystems, 9(3), 457–466.

    Article  Google Scholar 

  8. de la Fuente, A. (2010). From ‘differential expression’to ‘differential networking’–identification of dysfunctional regulatory networks in diseases. Trends in Genetics, 26(7), 326–333.

    Article  Google Scholar 

  9. Brachi, B., Morris, G. P., & Borevitz, J. O. (2011). Genome-wide association studies in plants: The missing heritability is in the field. Genome Biology, 12(10), 1.

    Article  Google Scholar 

  10. Makowsky, R., Pajewski, N. M., Klimentidis, Y. C., Vazquez, A. I., Duarte, C. W., Allison, D. B., & de Los Campos, G. (2011). Beyond missing heritability: Prediction of complex traits. PLoS Genetics, 7(4), e1002051.

    Article  Google Scholar 

  11. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I. W., & Daly, M. J. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559–575.

    Article  Google Scholar 

  12. Zhang, J., Zhang, Q., Lewis, D., & Zhang, M. Q. (2011). A Bayesian method for disentangling dependent structure of epistatic interaction. American Journal of Biostatistics, 2(1), 1.

    Google Scholar 

  13. Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupont, W. D., Parl, F. F., & Moore, J. H. (2001). Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. The American Journal of Human Genetics, 69(1), 138–147.

    Article  Google Scholar 

  14. Wang, J., Joshi, T., Valliyodan, B., Shi, H., Liang, Y., Nguyen, H. T., Zhang, J., & Xu, D. (2015). A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies. BMC Genomics, 16(1), 1.

    Article  Google Scholar 

  15. Kayano, M., Shiga, M., & Mamitsuka, H. (2014). Detecting differentially coexpressed genes from labeled expression data: A brief review. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 154–167.

    Article  Google Scholar 

  16. Wang, D., Wang, J., Jiang, Y., Liang, Y., & Xu, D. (2017). BFDCA: A comprehensive tool of using Bayes factor for differential co-expression analysis. Journal of Molecular Biology, 429, 446–453.

    Article  Google Scholar 

  17. Mortazavi, A. W., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621–628.

    Article  Google Scholar 

  18. Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., & Mesirov, J. P. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17(1), 98–110.

    Article  Google Scholar 

  19. Fraley, C., & Raftery, A. E. (2007). Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification, 24(2), 155–181.

    Article  MathSciNet  MATH  Google Scholar 

  20. Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 1.

    Article  Google Scholar 

  21. Rahmatallah, Y., Emmert-Streib, F., & Glazko, G. (2014). Gene sets net correlations analysis (GSNCA): A multivariate differential coexpression test for gene sets. Bioinformatics, 30(3), 360–368.

    Article  Google Scholar 

  22. Whitney, A. W. (1971). A direct method of nonparametric measurement selection. IEEE Transactions on Computers, 100(9), 1100–1103.

    Article  MATH  Google Scholar 

  23. Leung, K. M. (2007). Naive bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering.

    Google Scholar 

  24. Schaeffer, M. L., Harper, L. C., Gardiner, J. M., Andorf, C. M., Campbell, D. A., Cannon, E. K., Sen, T. Z., & Lawrence, C. J. (2011). MaizeGDB: Curation and outreach go hand-in-hand. Database, 2011, bar022.

    Article  Google Scholar 

  25. Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38, W64–W70.

    Article  Google Scholar 

  26. Plaxton, W. C. (1996). The organization and regulation of plant glycolysis. Annual Review of Plant Biology, 47(1), 185–214.

    Article  Google Scholar 

  27. Fu, J., Thiemann, A., Schrag, T. A., Melchinger, A. E., Scholten, S., & Frisch, M. (2010). Dissecting grain yield pathways and their interactions with grain dry matter content by a two-step correlation approach with maize seedling transcriptome. BMC Plant Biology, 10(1), 1.

    Article  Google Scholar 

  28. Brzobohaty, B., Moore, I., Kristoffersen, P., Bako, L., Campos, N., Schell, J., & Palme, K. (1993). Release of active Cytokinin by a -glucosidase localized to the maize root meristem. Science, 262, 1051–1054.

    Article  Google Scholar 

  29. Martin, R. C., Mok, M. C., & Mok, D. W. (1999). Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proceedings of the National Academy of Sciences, 96(1), 284–289.

    Article  Google Scholar 

  30. Ferreyra, M. L. F., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3, 222.

    Google Scholar 

  31. Owens, D. K., & McIntosh, C. A. (2009). Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. Phytochemistry, 70(11), 1382–1391.

    Article  Google Scholar 

  32. Ratti, C. (2001). Hot air and freeze-drying of high-value foods: A review. Journal of Food Engineering, 49(4), 311–319.

    Article  Google Scholar 

  33. Lai, K., Dolan, K., & Ng, P. (2009). Inverse method to estimate kinetic degradation parameters of grape anthocyanins in wheat flour under simultaneously changing temperature and moisture. Journal of Food Science, 74(5), E241–E249.

    Article  Google Scholar 

  34. Yılmaz, F. M., Yüksekkaya, S., Vardin, H., & Karaaslan, M. (2017). The effects of drying conditions on moisture transfer and quality of pomegranate fruit leather (pestil). Journal of the Saudi Society of Agricultural Sciences, 16, 33–40.

    Article  Google Scholar 

  35. Yuan, H., & Liu, D. (2008). Signaling components involved in plant responses to phosphate starvation. Journal of Integrative Plant Biology, 50(7), 849–859.

    Article  Google Scholar 

  36. Ahmad, R., Khalid, A., Arshad, M., Zahir, Z. A., & Mahmood, T. (2008). Effect of compost enriched with N and L-tryptophan on soil and maize. Agronomy for Sustainable Development, 28(2), 299–305.

    Article  Google Scholar 

  37. Hammer, G. L., Dong, Z., McLean, G., Doherty, A., Messina, C., Schussler, J., Zinselmeier, C., Paszkiewicz, S., & Cooper, M. (2009). Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Science, 49(1), 299–312.

    Article  Google Scholar 

  38. Zhu, G., Wu, A., Xu, X.-J., Xiao, P., Lu, L., Liu, J., Cao, Y., Chen, L., Wu, J., & Zhao, X.-M. (2015). PPIM: A protein-protein interaction database for maize. Plant Physiology, 02015, 01821.

    Google Scholar 

  39. Ding, C., & Peng, H. (2005). Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology, 3(02), 185–205.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Monsanto and the National Institutes of Health (R35-GM126985). The high-performance computing infrastructure is supported by the National Science Foundation under grant number CNS-1429294.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingdong Liu or Dong Xu .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 1

(ZIP 3180 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D. et al. (2020). Improving Maize Trait through Modifying Combination of Genes. In: Zhao, Y., Chen, DG. (eds) Statistical Modeling in Biomedical Research. Emerging Topics in Statistics and Biostatistics . Springer, Cham. https://doi.org/10.1007/978-3-030-33416-1_9

Download citation

Publish with us

Policies and ethics