Skip to main content

Diversity in Photoprotection and Energy Balancing in Terrestrial and Aquatic Phototrophs

  • Chapter
  • First Online:
Photosynthesis in Algae: Biochemical and Physiological Mechanisms

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 45))

Abstract

The evolution of oxygenic photosynthesis enabled organisms to use sunlight as an energy source, allowing them to colonize new niches. At the same time, life (as we know it) places severe constraints on photosynthesis. For example, the initial reactions of photosynthesis involve highly energetic intermediates that, if not controlled, can generate highly toxic side products (especially reactive oxygen species, ROS), that can damage other essential components of the organisms it powers. Photosynthesis must therefore be tightly regulated to balance the need for efficient energy conversion with the necessity of avoiding photodamage (Gust D, Kramer D, Moore A, Moore T, Vermaas W, Mater Res Bull 33:383–389, 2008). A related constraint on photosynthesis is the need to precisely balance how much energy is stored in ATP and NADPH to precisely meet biochemical demands. If this balancing does not occur, the system will fail, leading to photodamage (Kramer DM, Evans JR, Plant Physiol 155:70–78, 2011). Consideration of these requirements is essential for efforts to improve the efficiency of photosynthesis by introducing CO2 concentrating mechanisms, altering metabolism or biosynthetic pathways to shunt energy to alternative products (Kramer DM, Evans JR, Plant Physiol 155:70–78, 2011). These balancing processes must be extremely robust to contend with the rapid and unpredictable fluctuations in environmental conditions and metabolic demands that occur in nature. A large body of work has come from model systems, especially terrestrial higher plants and the green alga Chlamydomonas reinhardtii, leading to a model for the regulation of light reactions that involves 1) sensing of the pH gradient component of the thylakoid proton motive force (pmf), and 2) the redox state of the plastoquinone- and stromal pools. Over the short term, these sensors trigger regulation of light capture by altering the activity of ATP synthase leading to adjustments in lumen pH, which fine tunes light capture through nonphotochemical quenching (NPQ) and control of electron flow by adjusting the rate of PQH2 oxidation at the b6f complex. Simultaneously, this system controls the balance of ATP/NADPH by adjusting electron flux to linear and cyclic electron flow pathways to balance ATP/NADPH. This integrated “pmf paradigm” model explains much of the existing data on plants and green algae, but may not extend to other diverse organisms. This review considers how advances in our understanding of photosynthesis over the past 7–8 years, particularly in the discoveries of diverse biochemical/biophysical mechanisms in aquatic photosynthetic species, affects the view of energy balance, including the shunting of electrons to O2 through the flavodiiron proteins (FLV), the plastid terminal oxidase, the dissipation of electric field by ion movements, and the activation of alternative electron sinks. We will introduce the basic model that has been developed for higher plant chloroplasts, then contrast these with selected aquatic systems, focusing on how the differences impact the needs to re-balance both energy input and its partitioning into energy currencies.

*Author for correspondence, e-mail:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams WW III, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams W III, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Dordrecht

    Google Scholar 

  • Alboresi A, Storti M, Morosinotto T (2018) Balancing protection and efficiency in the regulation of photosynthetic electron transport across plant evolution. New Phytol 221:105–109

    PubMed  Google Scholar 

  • Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richaud P, Ajlani G, Battchikova N, Cournac L, Aro EM (2013) Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc Natl Acad Sci U S A 110(10):4111–4116. https://doi.org/10.1073/pnas.1221194110

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson B, Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In Photosynthesis and the Environment, Baker NR (ed), pp 101–121. The Netherlands: Kluwer Academic Publishers

    Google Scholar 

  • Armbruster U, Leonelli L, Correa Galvis V, Strand D, Quinn EH, Jonikas MC, Niyogi KK (2016) Regulation and levels of the thylakoid K+/H+ antiporter KEA3 shape the dynamic response of photosynthesis in fluctuating light. Plant Cell Physiol 57:1557–1567. https://doi.org/10.1093/pcp/pcw085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro E-M, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. BBA 1143:113–134

    CAS  PubMed  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol 50:601–639

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141(2):391–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avenson T, Cruz JA, Kramer D (2004) Modulation of energy dependent quenching of excitons (qE) in antenna of higher plants. Proc Natl Acad Sci U S A 101:5530–5535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE, Kramer DM (2005) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28:97–109

    CAS  Google Scholar 

  • Backhausen JE, Kitzmann C, Scheibe R (1994) Competition between electron acceptors in photosynthesis – regulation of the malate valve during Co2 fixation and nitrite reduction. Photosynth Res 42(1):75–86

    CAS  PubMed  Google Scholar 

  • Badger M (2003) The roles of carbonic anhydrases in photosynthetic CO(2) concentrating mechanisms. Photosynth Res 77(2–3):83–94. https://doi.org/10.1023/A:1025821717773

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond Ser B Biol Sci 355(1402):1433–1446. https://doi.org/10.1098/rstb.2000.0704

    Article  CAS  Google Scholar 

  • Bailleul B, Cardol P, Breyton C, Finazzi G (2010) Electrochromism: a useful probe to study algal photosynthesis. Photosynth Res 106(1–2):179–189. https://doi.org/10.1007/s11120-010-9579-z

    Article  CAS  PubMed  Google Scholar 

  • Bailleul B, Berne N, Murik O, Petroutsos D, Prihoda J, Tanaka A, Villanova V, Bligny R, Flori S, Falconet D, Krieger-Liszkay A, Santabarbara S, Rappaport F, Joliot P, Tirichine L, Falkowski PG, Cardol P, Bowler C, Finazzi G (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524(7565):366–369. https://doi.org/10.1038/nature14599

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Bowyer JR (1994) Photoinhibition of photosynthesis from molecular mechanisms to the field. In Environmental Plant Biology series, Davies WJ (ed), pp 1–471. Institute of Environmental and Biological Sciences, Division of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ,UK: Bios Scientific Publishers

    Google Scholar 

  • Barber J (1976) Ionic regulation in intact chloroplasts and its effect on primary photosynthetic processes. In: Barber J (ed) The intact chloroplast. Elsevier/North Holland Biomedical Press, Amsterdam, pp 89–134

    Google Scholar 

  • Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466(1):130–134

    CAS  PubMed  Google Scholar 

  • Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73(1–3):273–277. https://doi.org/10.1023/A:1020479920622

    Article  CAS  PubMed  Google Scholar 

  • Berne N, Fabryova T, Istaz B, Cardol P, Bailleul B (2018) The peculiar NPQ regulation in the stramenopile phaeomonas sp. challenges the xanthophyll cycle dogma. Biochim Biophys Acta Bioenerg 1859(7):491–500. https://doi.org/10.1016/j.bbabio.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  • Binder A (1982) Respiration and photosynthesis in energy-transducing membranes of cyanobacteria. J Bioenerg Biomembr 14(5–6):271–286

    CAS  PubMed  Google Scholar 

  • Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, Niyogi KK, Bassi R (2011) Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol 9(1):e1000577. https://doi.org/10.1371/journal.pbio.1000577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branden G, Gennis RB, Brzezinski P (2006) Transmembrane proton translocation by cytochrome c oxidase. BBA-Bioenergetics 1757(8):1052–1063. https://doi.org/10.1016/j.bbabio.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  • Braun G, Evron Y, Malkin S, Avron M (1991) Proton flow through the ATP synthase in chloroplasts regulates the distribution of light energy between PS I and PS II. FEBS Lett 280:57–60

    CAS  PubMed  Google Scholar 

  • Breyton C, Nandha B, Johnson GN, Joliot P, Finazzi G (2006) Redox modulation of cyclic electron flow around photosystem I in C3 plants, Biochemistry 45, 13465–13475

    Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17(4):868–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cape JL, Bowman MK, Kramer DM (2006) Understanding the cytochrome bc complexes by what they don’t do. The Q-cycle at 30. Trends Plant Sci 11:46–55

    CAS  PubMed  Google Scholar 

  • Chaux F, Burlacot A, Mekhalfi M, Auroy P, Blangy S, Richaud P, Peltier G (2017) Flavodiiron proteins promote fast and transient O2 photoreduction in chlamydomonas. Plant Physiol 174(3):1825–1836. https://doi.org/10.1104/pp.17.00421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Checchetto V, Segalla A, Allorent G, La Rocca N, Leanza L, Giacometti GM, Uozumi N, Finazzi G, Bergantino E, Szabo I (2012) Thylakoid potassium channel is required for efficient photosynthesis in cyanobacteria. Proc Natl Acad Sci U S A 109(27):11043–11048. https://doi.org/10.1073/pnas.1205960109

    Article  PubMed  PubMed Central  Google Scholar 

  • Chukhutsina V, Bersanini L, Aro EM, van Amerongen H (2015) Cyanobacterial flv4-2 operon-encoded proteins optimize light harvesting and charge separation in photosystem II. Mol Plant 8(5):747–761. https://doi.org/10.1016/j.molp.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  • Crouchman S, Ruban A, Horton P (2006) PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Lett 580(8):2053–2058. https://doi.org/10.1016/j.febslet.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  • Cruz JA, Sacksteder CA, Kanazawa A, Kramer DM (2001) Contribution of electric field (Dy) to steady-state transthylakoid proton motive force in vitro and in vivo. Control of pmf parsing into Dy and DpH by counterion fluxes. Biochemistry 40:1226–1237

    CAS  PubMed  Google Scholar 

  • Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM (2005a) Plasticity in light reactions of photosynthesis for energy production and photoprotection. J Exp Bot 56:395–406

    CAS  PubMed  Google Scholar 

  • Cruz JA, Kanazawa A, Treff N, Kramer DM (2005b) Storage of light-driven transthylakoid proton motive force as an electric field Dy under steady-state conditions in intact cells of Chlamydomonas reinhardtii. Photosynth Res 85(2):221–233

    CAS  PubMed  Google Scholar 

  • DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schunemann D, Finazzi G, Joliot P, Barbato R, Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132(2):273–285

    CAS  PubMed  Google Scholar 

  • Dang KV, Plet J, Tolleter D, Jokel M, Cuine S, Carrier P, Auroy P, Richaud P, Johnson X, Alric J, Allahverdiyeva Y, Peltier G (2014) Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 26(7):3036–3050. https://doi.org/10.1105/tpc.114.126375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daum B, Nicastro D, Austin J 2nd, McIntosh JR, Kuhlbrandt W (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22(4):1299–1312. https://doi.org/10.1105/tpc.109.071431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GA, Kanazawa A, Schöttler MA, Kohzuma K, Froehlich JE, Rutherford AW, Satoh-Cruz M, Minhas D, Tietz S, Dhingra A, Kramer DM (2016) Limitations to photosynthesis by proton motive force-induced photosystem II photodamage. elife 5:e16921

    PubMed  PubMed Central  Google Scholar 

  • Davis GA, Rutherford AW, Kramer DM (2017) Hacking the thylakoid proton motive force (pmf) for improved photosynthesis: possibilities and pitfalls. Philos Trans R Soc B 372:20160381

    Google Scholar 

  • Deamer DW, Crofts AR, Packer L (1966) Mechanisms of light-induced structural changes in chloroplasts. I. Light-scattering increments and ultrastructural changes mediated by proton transport. Biochim Biophys Acta 131:81–96

    Google Scholar 

  • Demmig-Adams B, Adams W (1996) The role of xanthophyll cycle carotenoids in the protecion of photosynthesis. Trends Plant Sci 1:21–26

    Google Scholar 

  • Demmig-Adams B, Stewart JJ, Adams WW 3rd (2017) Environmental regulation of intrinsic photosynthetic capacity: an integrated view. Curr Opin Plant Biol 37:34–41. https://doi.org/10.1016/j.pbi.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  • Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in chlamydomonas chloroplasts. J Biol Chem 284(7):4148–4157

    CAS  PubMed  Google Scholar 

  • Diaz M, de Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30(12):1578–1585. https://doi.org/10.1111/j.1365-3040.2007.01735.x

    Article  CAS  PubMed  Google Scholar 

  • Drachev LA, Kaurov BS, Mamedov MD, Mulkidjanian AY, Semenov AY, Shinkarev VP, Skulachev VP, Verkhovsky MI (1989) Flash-induced electrogenic events in the photosynthetic reaction center and bc1complexes of rhodobacter sphaeroides chromatophores. Biochim Biophys Acta 973:189–197

    CAS  Google Scholar 

  • Ducruet JM, Roman M, Havaux M, Janda T, Gallais A (2005) Cyclic electron flow around PSI monitored by afterglow luminescence in leaves of maize inbred lines (Zea mays L.): correlation with chilling tolerance. Planta 221(4):567–579

    CAS  PubMed  Google Scholar 

  • Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465(7297):441–445

    CAS  PubMed  Google Scholar 

  • Ermakova M, Huokko T, Richaud P, Bersanini L, Howe CJ, Lea-Smith DJ, Peltier G, Allahverdiyeva Y (2016) Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium synechocystis sp PCC 6803. Plant Physiol 171(2):1307–1319. https://doi.org/10.1104/pp.16.00479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskling M, Emanuelsson A, Akerlund H-E (2001) Enzymes and mechanisms for violaxanthin-zeaxanthin conversion. In: Aro E-M, Anderson B (eds) Regulation of photosynthesis, vol 100. Kluwer Academic Publishers, Dordrecht, pp 806–816

    Google Scholar 

  • Feilke K, Streb P, Cornic G, Perreau F, Kruk J, Krieger-Liszkay A (2016) Effect of chlamydomonas plastid terminal oxidase 1 expressed in tobacco on photosynthetic electron transfer. Plant J 85(2):219–228. https://doi.org/10.1111/tpj.13101

    Article  CAS  PubMed  Google Scholar 

  • Feilke K, Ajlani G, Krieger-Liszkay A (2017) Overexpression of plastid terminal oxidase in synechocystis sp. PCC 6803 alters cellular redox state (vol 372, 20160379, 2017). Philos Trans R Soc B Biol Sci 372(1736):20160379. https://doi.org/10.1098/rstb.2017.0277

    Article  Google Scholar 

  • Feniouk BA, Cherepanov DA, Junge W, Mulkidjanian AY (1999) ATP-synthase of Rhodobacter capsulatus: coupling of proton flow through F0 to reactions in F1 under the ATP synthesis and slip conditions. FEBS Lett 445(2–3):409–414

    CAS  PubMed  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3(3):280–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer S, Graber P (1999) Comparison of DpH- and Dy-driven ATP synthesis catalyzed by the H(+)-ATPases from Escherichia coli or chloroplasts reconstituted into liposomes. FEBS Lett 457:327–332

    CAS  PubMed  Google Scholar 

  • Fisher N, Quevedo V, Kramer DM (2018) To b or not to b: direct reduction of cytochrome b-563 by ferredoxin in higher plant cyclic electron flow in vitro? Biochim Biophys Acta 1859:e106

    Google Scholar 

  • Fisher N, Bricker T, Kramer DM (2019) Regulation of cyclic electron flow pathways by adenylate status in higher plant chloroplasts. Proc Natl Acad Sci U S A submitted

    Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100. https://doi.org/10.1104/pp.110.166181

    Article  CAS  PubMed  Google Scholar 

  • Friedrich T, Steinmuller K, Weiss H (1995) The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. FEBS Lett 367(2):107–111

    CAS  PubMed  Google Scholar 

  • Furbacher PN, Girvin ME, Cramer WA (1989) On the question of interheme electron transfer in the chloroplast cytochrome b6 in situ. Biochemistry 28:8990–8998

    CAS  PubMed  Google Scholar 

  • Gerotto C, Alboresi A, Giacometti GM, Bassi R, Morosinotto T (2011) Role of PSBS and LHCSR in Physcomitrella patens acclimation to high light and low temperature. Plant Cell Environ 34(6):922–932. https://doi.org/10.1111/j.1365-3040.2011.02294.x

    Article  CAS  PubMed  Google Scholar 

  • Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants-evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220(2):356–363

    CAS  PubMed  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32. https://doi.org/10.1016/j.jplph.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  • Grabolle M, Dau H (2005) Energetics of primary and secondary electron transfer in photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708(2):209–218. https://doi.org/10.1016/j.bbabio.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  • Groth G, Junge W (1993) Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. Biochemistry 32:8103–8111

    CAS  PubMed  Google Scholar 

  • Gust D, Kramer D, Moore A, Moore T, Vermaas W (2008) Engineered and artificial photosynthesis: human ingenuity enters the game. Mater Res Bull 33:383–389

    CAS  Google Scholar 

  • Hangarter RP, Good ND (1982) Energy thresholds for ATP synthesis in chloroplasts. Biochim Biophys Acta 681:396–404

    Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of photosystem I and II in pea leaves. Plant Physiol 90:1029–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M, Rumeau D, Ducruet JM (2005) Probing the FQR and NDH activities involved in cyclic electron transport around photosystem I by the ‘afterglow’ luminescence. BBA-Bioenergetics 1709(3):203–213

    CAS  PubMed  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13(3):230–235

    CAS  PubMed  Google Scholar 

  • Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D (2013) PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49(3):511–523. https://doi.org/10.1016/j.molcel.2012.11.030

    Article  CAS  PubMed  Google Scholar 

  • Heyno E, Gross CM, Laureau C, Culcasi M, Pietri S, Krieger-Liszkay A (2009) Plastid alternative oxidase (PTOX) promotes oxidative stress when overexpressed in tobacco. J Biol Chem 284(45):31174–31180. https://doi.org/10.1074/jbc.M109.021667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hideg E, Kalai T, Kos PB, Asada K, Hideg K (2006) Singlet oxygen in plants- its significance and possible detection with double (fluorescent and spin) indicator reagents. Photochem Photobiol 82(5):1211–1218

    CAS  PubMed  Google Scholar 

  • Hochmal AK, Schulze S, Trompelt K, Hippler M (2015) Calcium-dependent regulation of photosynthesis. Biochim Biophys Acta 1847(9):993–1003. https://doi.org/10.1016/j.bbabio.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  • Holser JP, Yocum CF (1987) Regulation of cyclic photophosphorylation during ferredoxin-mediated electron transport. Plant Physiol 83:965–969

    Google Scholar 

  • Houille-Vernes L, Rappaport F, Wollman FA, Alric J, Johnson X (2011) Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc Natl Acad Sci U S A 108(51):20820–20825. https://doi.org/10.1073/Pnas.1110518109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huner NPA, Oquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3(6):224–230. https://doi.org/10.1016/s1360-1385(98)01248-5

    Article  Google Scholar 

  • Ibanez H, Ballester A, Munoz R, Quiles MJ (2010) Chlororespiration and tolerance to drought, heat and high illumination. J Plant Physiol 167(9):732–738. https://doi.org/10.1016/j.jplph.2009.12.013

    Article  CAS  PubMed  Google Scholar 

  • Ifuku K, Endo T, Shikanai T, Aro EM (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits. Plant Cell Physiol 52(9):1560–1568. https://doi.org/10.1093/pcp/pcr098

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis N, Cruz J, Kotzabasis K, Kramer DM (2012) Does putrescine regulate the higher plant photosynthetic proton circuit? PLoS One 7(1):1–6

    Google Scholar 

  • Ishikawa N, Endo T, Sato F (2008) Electron transport activities of Arabidopsis thaliana mutants with impaired chloroplastic NAD(P)H dehydrogenase. J Plant Res 121(5):521–526

    CAS  PubMed  Google Scholar 

  • Ivanov AG, Rosso D, Savitch LV, Stachula P, Rosembert M, Oquist G, Hurry V, Huner NPA (2012) Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana. Photosynth Res 113(1–3):191–206. https://doi.org/10.1007/s11120-012-9769-y

    Article  CAS  PubMed  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464(7292):1210–1213

    CAS  PubMed  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H (1995) Structure at 2.8-Angstrom resolution of cytochrome-c-oxidase from Paracoccus denitrificans. Nature 376(6542):660–669. https://doi.org/10.1038/376660a0

    Article  CAS  PubMed  Google Scholar 

  • Jackson JB (2012) A review of the binding-change mechanism for proton-translocating transhydrogenase. Biochem Biophys Acta 1817:1839–1846

    CAS  PubMed  Google Scholar 

  • Jahns P, Graf M, Munekage Y, Shikanai T (2002) Single point mutation in the Rieske iron-sulfur subunit of cytochrome b6/f leads to an altered pH dependence of plastoquinol oxidation in Arabidopsis. FEBS Lett 519(1–3):99–102

    CAS  PubMed  Google Scholar 

  • Jarmuszkiewicz W (2001) Uncoupling proteins in mitochondria of plants and some microorganisms. Acta Biochim Pol 48(1):145–155

    CAS  PubMed  Google Scholar 

  • Jia H, Oguchi R, Hope AB, Barber J, Chow WS (2008) Differential effects of severe water stress on linear and cyclic electron fluxes through photosystem I in spinach leaf discs in CO2-enriched air. Planta 228(5):803–812

    CAS  PubMed  Google Scholar 

  • Joet T, Cournac L, Peltier G, Havaux M (2002a) Cyclic electron flow around photosystem I in C-3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128(2):760–769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joet T, Genty B, Josse EM, Kuntz M, Cournac L, Peltier G (2002b) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco. J Biol Chem 277(35):31623–31630

    CAS  PubMed  Google Scholar 

  • Johnson G (2004) Controversy remains: regulation of pH gradient across the thylakoid membrane. Trends Plant Sci 9(12):570–571. author reply 571–572

    CAS  PubMed  Google Scholar 

  • Jokel M, Johnson X, Peltier G, Aro EM, Allahverdiyeva Y (2018) Hunting the main player enabling Chlamydomonas reinhardtii growth under fluctuating light. Plant J 94(5):822–835. https://doi.org/10.1111/tpj.13897

    Article  CAS  PubMed  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci U S A 108(32):13317–13322. https://doi.org/10.1073/Pnas.1110189108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Joliot A (2002) Cyclic electron transfer in plant leaf, Proc Natl Acad Sci U S A 99, 10209–10214.

    Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants, Biochim Biophys Acta 1757, 362–368

    Google Scholar 

  • Joliot P, Beal D, Joliot A (2004) Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. Biochim Biophys Acta 1656(2–3):166–176

    CAS  PubMed  Google Scholar 

  • Josse EM, Simkin AJ, Gaffe J, Laboure AM, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123(4):1427–1436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Junge W, Witt HT (1968) On the ion transport system of photosynthesis–investigations on a molecular level. Z Naturforsch B 23(2):244–254

    CAS  PubMed  Google Scholar 

  • Junge W, Ausländer W, McGeer AJ, Runge T (1979) The buffering capacity of the internal phase of thykaloids and the magnitude of the pH changes inside under flashing light. Biochim Biophys Acta 546:121–141

    CAS  PubMed  Google Scholar 

  • Kadenbach B, Arnold S (1999) A second mechanism of respiratory control. FEBS Lett 447(2–3):131–134

    CAS  PubMed  Google Scholar 

  • Kakitani T, Honig B, Crofts AR (1982) Theoretical studies of the electrochromic response of carotenoids in photosynthetic membranes. Biophys J 39:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamarainen J, Huokko T, Kreula S, Jones PR, Aro EM, Kallio P (2017) Pyridine nucleotide transhydrogenase PntAB is essential for optimal growth and photosynthetic integrity under low-light mixotrophic conditions in Synechocystis sp PCC 6803. New Phytol 214(1):194–204. https://doi.org/10.1111/nph.14353

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, Kramer DM (2002) In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc Natl Acad Sci U S A 99:12789–12794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazawa A, Ostendorf E, Kohzuma K, Hoh D, Strand DD, Sato-Cruz M, Savage L, Cruz JA, Froehlich JE, Kramer DM (2017) Chloroplast ATP synthase modulation of the thylakoid proton motive force: implications for photosystem I and photosystem II photoprotection. Front Plant Physiol 8:719. https://doi.org/10.3389/fpls.2017.00719

    Article  Google Scholar 

  • Kirchhoff H, Hall C, Wood M, Herbstova M, Tsabari O, Nevo R, Charuvi D, Shimoni E, Reich Z (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci U S A 108(50):20248–20253. https://doi.org/10.1073/pnas.1104141109

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2012) The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochim Biophys Acta 1817(1):158–166. https://doi.org/10.1016/j.bbabio.2011.04.013

    Article  CAS  PubMed  Google Scholar 

  • Kirilovsky D, Kerfeld CA (2016) Cyanobacterial photoprotection by the orange carotenoid protein. Nat Plants 2(12):16180. https://doi.org/10.1038/nplants.2016.180

    Article  CAS  PubMed  Google Scholar 

  • Kiss AZ, Ruban AV, Horton P (2008) The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J Biol Chem 283(7):3972–3978

    CAS  PubMed  Google Scholar 

  • Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage Y, Yokota A, Kramer DM (2009) The long-term responses of the photosynthetic proton circuit to drought. Plant Cell Environ 32:209–219

    CAS  PubMed  Google Scholar 

  • Kramer DM, Evans JR (2011) The importance of energy balance in improving photosynthetic productivity. Plant Physiol 155:70–78

    CAS  PubMed  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    CAS  PubMed  Google Scholar 

  • Kramer DM, Avenson TJ, Edwards GE (2004a) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci 9:349–357

    CAS  PubMed  Google Scholar 

  • Kramer DM, Kanazawa A, Cruz JA, Ivanov B, Edwards GE (2004b) The relationship between photosynthetic electron transfer and its regulation. In: Govindjee, Papageorgiou GC (eds) Chlorophyll fluorescence: the signature of green plant photosynthesis, vol 251–278. Kluwer Publishers, Dordrecht

    Google Scholar 

  • Krieger A, Weis E (1993) The role of calcium in the pH-dependent control of photosystem II. Photosynth Res 37:117–130

    CAS  PubMed  Google Scholar 

  • Krieger-Liszkay A, Feilke K (2015) The dual role of the plastid terminal oxidase PTOX: between a protective and a pro-oxidant function. Front Plant Sci 6:1147. https://doi.org/10.3389/fpls.2015.01147

    Article  PubMed  Google Scholar 

  • Kromdijk J, Glowacka K, Leonelli L, Gabilly ST, Iwai M, Niyogi KK, Long SP (2016) Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354(6314):857–861. https://doi.org/10.1126/science.aai8878

    Article  CAS  PubMed  Google Scholar 

  • Krupnik T, Kotabova E, van Bezouwen LS, Mazur R, Garstka M, Nixon PJ, Barber J, Kana R, Boekema EJ, Kargul J (2013) A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae. J Biol Chem 288(32):23529–23542. https://doi.org/10.1074/jbc.M113.484659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicki A, Funk E, Westhoff P, Steinmueller K (1996) Differential expression of plastome-encoded ndh genes in the mesophyll and bundle sheath chloroplasts of the C-4 plant Sorgum bicolor indicates that the complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport. Planta 199:276–281

    CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302(5647):1009–1014

    CAS  PubMed  Google Scholar 

  • Laisk A, Eichelmann H, Oja V, Talts E, Scheibe R (2007) Rates and roles of cyclic and alternative electron flow in potato leaves. Plant Cell Physiol 48(11):1575–1588

    CAS  PubMed  Google Scholar 

  • Lascano H, Casano L, Martin M, Sabater B (2003) The activity of the chloroplastic Ndh complex is regulated by phosphorylation of the NDH-F subunit. Plant Physiol 132:256–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laureau C, De Paepe R, Latouche G, Moreno-Chacon M, Finazzi G, Kuntz M, Cornic G, Streb P (2013) Plastid terminal oxidase (PTOX) has the potential to act as a safety valve for excess excitation energy in the alpine plant species Ranunculus glacialisL. Plant Cell Environ 36(7):1296–1310. https://doi.org/10.1111/pce.12059

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Goss R, Jakob T, Wilhelm C (2012) Molecular dynamics of the diatom thylakoid membrane under different light conditions. Photosynth Res 111(1–2):245–257. https://doi.org/10.1007/s11120-011-9633-5

    Article  CAS  PubMed  Google Scholar 

  • Li XP, Muller-Moule P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci U S A 99(23):15222–15227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279(22):22866–22874

    CAS  PubMed  Google Scholar 

  • Livingston AK, Cruz JA, Kohzuma K, Dhingra A, Kramer DM (2010a) An Arabidopsis mutant with high cyclic electron flow around photosystem I (hcef) involving the NDH complex. Plant Cell 22:221–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livingston AK, Kanazawa A, Cruz JA, Kramer DM (2010b) Regulation of cyclic electron transfer in C3 plants: differential effects of limiting photosynthesis at rubisco and glyceraldehyde-3-phosphate dehydrogenase. Plant Cell Environ 33(11):1779–1788

    CAS  PubMed  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol 45:633–662. https://doi.org/10.1146/Annurev.Pp.45.060194.003221

    Article  CAS  Google Scholar 

  • Lu B, Xu C, Awai K, Jones AD, Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282(49):35945–35953. https://doi.org/10.1074/jbc.M704063200

    Article  CAS  PubMed  Google Scholar 

  • Lucker B, Kramer DM (2013) Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynth Res 117:449–459. https://doi.org/10.1007/s11120-013-9932-0

    Article  CAS  PubMed  Google Scholar 

  • Mangan N, Brenner M (2014) Systems analysis of the CO2 concentrating mechanism in cyanobacteria. elife 3:e02043. https://doi.org/10.7554/eLife.02043

    Article  PubMed Central  Google Scholar 

  • Marchant J, Heydarizadeh P, Schoefs B, Spetea C (2018) Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 75(12):2153–2176. https://doi.org/10.1007/s00018-018-2793-0

    Article  CAS  Google Scholar 

  • McDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Huner NP (2011) Flexibility in photosynthetic electron transport: the physiological role of plastoquinol terminal oxidase (PTOX). Biochim Biophys Acta 1807(8):954–967. https://doi.org/10.1016/j.bbabio.2010.10.024

    Article  CAS  PubMed  Google Scholar 

  • Monne M, Daddabbo L, Gagneul D, Obata T, Hielscher B, Palmieri L, Miniero DV, Fernie AR, Weber APM, Palmieri F (2018) Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates. J Biol Chem 293(11):4213–4227. https://doi.org/10.1074/jbc.RA117.000771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125: 1558-1566

    Google Scholar 

  • Munekage Y, Hashimoto M, Miyake C, Tomizawa K, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429(6991):579–582

    CAS  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155(1):86–92. https://doi.org/10.1104/pp.110.168831

    Article  CAS  PubMed  Google Scholar 

  • Nawrocki WJ, Bailleul B, Cardol P, Rappaport F, Wollman FA, Joliot P (2019) Maximal cyclic electron flow rate is independent of PGRL1 in Chlamydomonas. Biochim Biophys Acta Bioenerg 1860:425–432. https://doi.org/10.1016/j.bbabio.2019.01.004

    Article  CAS  PubMed  Google Scholar 

  • Nelson N, Sacher A, Nelson H (2002) The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 3(11):876–881. https://doi.org/10.1038/nrm955

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y, Allakhverdiev SI, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. BBA-Bioenergetics 1757(7):742–749

    CAS  PubMed  Google Scholar 

  • Niyogi KK, Li X-P, Rosenberg V, Jung H-S (2004) Is PsbS the site of non-photochemical quenching in photosynthesis? J Exp Bot 56:375–382

    PubMed  Google Scholar 

  • Noctor G, Foyer C (1998) A re-evaluation of the ATP: NADPH budget during C3 photosynthesis: a contribution from nitrate assimilation and its associated respiratory activity? J Exp Bot 49:1895–1908

    CAS  Google Scholar 

  • Okegawa Y, Tsuyama M, Kobayashi Y, Shikanai T (2005) The pgr1 mutation in the Rieske subunit of the cytochrome b6f complex does not affect PGR5-dependent cyclic electron transport around photosystem I. J Biol Chem 280(31):28332–28336. https://doi.org/10.1074/jbc.M505703200

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Yocum CF (1996) Light reactions of oxygenic photosynthesis. In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 1–9

    Google Scholar 

  • Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462(7272):518–521. https://doi.org/10.1038/nature08587

    Article  CAS  PubMed  Google Scholar 

  • Peltier G, Tolleter D, Billon E, Cournac L (2010) Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth Res 106(1–2):19–31. https://doi.org/10.1007/s11120-010-9575-3

    Article  CAS  PubMed  Google Scholar 

  • Pfeil BE, Schoefs B, Spetea C (2014) Function and evolution of channels and transporters in photosynthetic membranes. Cell Mol Life Sci 71(6):979–998. https://doi.org/10.1007/s00018-013-1412-3

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Schönknecht G (1996) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 152:223–233

    CAS  PubMed  Google Scholar 

  • Prihoda J, Tanaka A, de Paula WBM, Allen JF, Tirichine L, Bowler C (2012) Chloroplast-mitochondria cross-talk in diatoms. J Exp Bot 63(4):1543–1557. https://doi.org/10.1093/jxb/err441

    Article  CAS  PubMed  Google Scholar 

  • Pringault O, de Wit R, Camoin G (2005) Irradiance regulation of photosynthesis and respiration in modern marine microbialites built by benthic cyanobacteria in a tropical lagoon (New Caledonia). Microb Ecol 49(4):604–616. https://doi.org/10.1007/s00248-004-0102-y

    Article  CAS  PubMed  Google Scholar 

  • Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant Cell Environ 29(8):1463–1470

    CAS  PubMed  Google Scholar 

  • Ramzan R, Staniek K, Kadenbach B, Vogt S (2010) Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta 1797(9):1672–1680. https://doi.org/10.1016/j.bbabio.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar Choubeh R, Wientjes E, Struik PC, Kirilovsky D, van Amerongen H (2018) State transitions in the cyanobacterium Synechococcus elongatus 7942 involve reversible quenching of the photosystem II core. Biochim Biophys Acta Bioenerg 1859:1059–1066. https://doi.org/10.1016/j.bbabio.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (2011) The cost of photoinhibition. Physiol Plant 142:87–104. https://doi.org/10.1111/j.1399-3054.2011.01465.x

    Article  CAS  PubMed  Google Scholar 

  • Rosso D, Ivanov AG, Fu A, Geisler-Lee J, Hendrickson L, Geisler M, Stewart G, Krol M, Hurry V, Rodermel SR, Maxwell DP, Huner NPA (2006) IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of arabidopsis during steady-state photosynthesis. Plant Physiol 142(2):574–585. https://doi.org/10.1104/pp.106.085886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. Plant Cell Environ 30:1041–1051

    CAS  PubMed  Google Scholar 

  • Rutherford AW, Osyczka A, Rappaport F (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O-2. FEBS Lett 586(5):603–616. https://doi.org/10.1016/J.Febslet.2011.12.039

    Article  CAS  PubMed  Google Scholar 

  • Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM (2000) The proton to electron stoichiometry of steady-state photosynthesis in living plants: a proton-pumping Q-cycle is continuously engaged. Proc Natl Acad Sci U S A 97:14283–14288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheibe R (2004) Malate valves to balance cellular energy supply. Physiol Plant 120(1):21–26

    CAS  PubMed  Google Scholar 

  • Scheller HV (1996) In vitro cyclic electron transport in barley thykaloids follows two independent pathways. Plant Physiol 110:187–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer S, Almon H, Boger P (1988) Interaction of photosynthesis, respiration and nitrogen fixation in cyanobacteria. Photosynth Res 15(2):95–114. https://doi.org/10.1007/BF00035255

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld M, Neumann J (1977) Proton conductance of the thylakoid membrane: modulation by light. FEBS Lett 73(1):51–54

    CAS  PubMed  Google Scholar 

  • Schönknecht G, Hedrich R, Junge W, Raschke K (1988) A voltage-dependent chloride channel in the photosynthetic membrane of a higher plant. Nature 336:589–592

    Google Scholar 

  • Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217

    CAS  PubMed  Google Scholar 

  • Shikanai T (2010) Regulation of photosynthetic electron transport. In: Rebeiz C, Benning C, Bohnert H et al (eds) Chloroplast: basics and applications, Advances in photosynthesis and respiration, vol 31. Springer, Dordrecht, pp 347–362

    Google Scholar 

  • Shikanai T, Yamamoto H (2017) Contribution of cyclic and pseudo-cyclic electron transport to the formation of proton motive force in chloroplasts. Mol Plant 10(1):20–29. https://doi.org/10.1016/j.molp.2016.08.004

    Article  CAS  PubMed  Google Scholar 

  • Shimakawa G, Shaku K, Miyake C (2016) Oxidation of P700 in photosystem I is essential for the growth of cyanobacteria. Plant Physiol 172(3):1443–1450. https://doi.org/10.1104/pp.16.01227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoike K (2010) Photoinhibition of photosystem I. Physiol Plant 142:56–64. https://doi.org/10.1111/j.1399-3054.2010.01437.x

    Article  CAS  Google Scholar 

  • Spetea C, Hidge E, Vass I (1997) Low pH accelerates light-induced damage of photosystem II by enhancing the probability of the donor-side mechanism of photoinhibition. Biochim Biophys Acta 1318:275–283

    CAS  Google Scholar 

  • Spetea C, Szabo I, Kunz HH (2016) Editorial: ion transport in chloroplast and mitochondria physiology in green organisms. Front Plant Sci 7:2003. https://doi.org/10.3389/fpls.2016.02003

    Article  PubMed  Google Scholar 

  • Spetea C, Herdean A, Allorent G, Carraretto L, Finazzi G, Szabo I (2017) An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis. Physiol Plant 161(1):16–27. https://doi.org/10.1111/ppl.12568

    Article  CAS  PubMed  Google Scholar 

  • Stephan AB, Kunz HH, Yang E, Schroeder JI (2016) Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 113(35):E5242–E5249. https://doi.org/10.1073/pnas.1519555113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149(2):1154–1165. https://doi.org/10.1104/pp.108.132407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien P, Johnson GN (2018) Plastid terminal oxidase requires translocation to the grana stacks to act as a sink for electron transport. Proc Natl Acad Sci U S A 115(38):9634–9639. https://doi.org/10.1073/pnas.1719070115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stock D, Leslie AG, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286(5445):1700–1705

    CAS  PubMed  Google Scholar 

  • Strand DD, Kramer DM (2014) Control of non-photochemical exciton quenching by the proton circuit of photosynthesis. In: Demmig-Adams B, Garab G, Adams W III, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria, Advances in photosynthesis, vol XXXVIII. Springer, Dordrecht, pp 387–408

    Google Scholar 

  • Strand DD, Livingston AK, Kramer DM (2013) Do state transitions control cef1 in higher plants? In: Kuang T, Lu C, Zhang L (eds) Photosynthesis for food, fuel and future. Springer, Beijing, pp 286–289

    Google Scholar 

  • Strand DD, Livingston AK, Satoh-Cruz M, Froehlich JE, Maurino VG, Kramer DM (2015) Activation of cyclic electron flow by hydrogen peroxide in vivo. Proc Natl Acad Sci U S A 112:5539–5544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strand DD, Fisher N, Davis GA, Kramer DM (2016a) Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids. Biochim Biophys Acta 1857:1–6. https://doi.org/10.1016/j.bbabio.2015.07.012

    Article  CAS  PubMed  Google Scholar 

  • Strand DD, Fisher N, Kramer DM (2016b) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts. In: Kirchhoff H (ed) Chloroplasts: current research and future trends, vol 978-1-910190-47-0. Horizon Press, Norforlfk

    Google Scholar 

  • Strand DD, Livingston AK, Satoh-Cruz M, Koepke T, Enlow HM, Fisher N, Froehlich JE, Cruz JA, Minhas D, Hixson KK, Kohzuma K, Lipton M, Dhingra A, Kramer DM (2016c) Defects in the expression of chloroplast proteins leads to H2O2 accumulation and activation of cyclic electron flow around photosystem I. Front Plant Sci 7:2073. https://doi.org/10.3389/fpls.2016.02073

    Article  PubMed  Google Scholar 

  • Strand DD, Fisher N, Kramer DM (2017) The higher plant plastid complex I (NDH) is a thermodynamically reversible proton pump that increases ATP production by cyclic electron flow around photosystem I. J Biol Chem 292(28):11850–11860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Streb P, Josse EM, Gallouet E, Baptist F, Kuntz M, Cornic G (2005) Evidence for alternative electron sinks to photosynthetic carbon assimilation in the high mountain plant species Ranunculus glacialis. Plant Cell Environ 28(9):1123–1135

    CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426(6965):413–418

    CAS  PubMed  Google Scholar 

  • Sweetlove L, Lytovchenko A, Morgan M, Nunes-Nesi A, Taylor N, Baxter C, Eickmeier I, Fernie A (2006) Mitochondrial uncoupling protein is required for efficient photosynthesis. Proc Natl Acad Sci 103:19587–19592

    CAS  PubMed  Google Scholar 

  • Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954. https://doi.org/10.1038/ncomms2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takizawa K, Kanazawa A, Cruz JA, Kramer DM (2007) In vivo thylakoid proton motive force. Quantitative non-invasive probes show the relative lumen pH-induced regulatory responses of antenna and electron transfer. Biochim Biophys Acta 1767:1233–1244

    CAS  PubMed  Google Scholar 

  • Takizawa K, Cruz JA, Kramer DM (2008) Depletion of stromal inorganic phosphate induces high ‘energy-dependent’ antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant Cell Environ 31:235–243

    CAS  PubMed  Google Scholar 

  • Terashima M, Petroutsos D, Hudig M, Tolstygina I, Trompelt K, Gabelein P, Fufezan C, Kudla J, Weinl S, Finazzi G, Hippler M (2012) Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc Natl Acad Sci U S A 109(43):17717–17722. https://doi.org/10.1073/pnas.1207118109

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokutsu R, Minagawa J (2013) Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 110(24):10016–10021. https://doi.org/10.1073/pnas.1222606110

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouillard M, Shahbazi M, Moyet L, Rappaport F, Joliot P, Kuntz M, Finazzi G (2012) Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant. BBA-Bioenergetics 1817(12):2140–2148. https://doi.org/10.1016/j.bbabio.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  • Trubitsin BV, Ptushenko VV, Koksharova OA, Mamedov MD, Vitukhnovskaya LA, Grigor’ev IA, Semenov AY, Tikhonov AN (2005) EPR study of electron transport in the cyanobacterium Synechocystis sp. PCC 6803: oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Biochim Biophys Acta 1708(2):238–249. https://doi.org/10.1016/j.bbabio.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  • Turina P, Samoray D, Graber P (2003) H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1-liposomes. EMBO J 22(3):418–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyystjärvi E, Aro E (1996) The rate constant of photoinhibition, measured in lincomycin- treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci U S A 93(5):2213–2218

    PubMed  PubMed Central  Google Scholar 

  • van Gorkom HJ (1996) Electroluminescence. Photosynth Res 48:107–116

    PubMed  Google Scholar 

  • van Wijk KJ (2004) Plastid proteomics. Plant Physiol Biochem 42(12):963–977. https://doi.org/10.1016/j.plaphy.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  • Vass I, Styring S, Hundal T, Koivuniemi A, Aro E, Andersson B (1992) Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A 89(4):1408–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vermaas WF (2001) Photosynthesis and respiration in cyanobacteria. Encyclopedia of Life Sciences. https://doi.org/10.1038/npg.els.0001670

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci 13(4):151–159. https://doi.org/10.1016/j.tplants.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Duanmu D, Spalding MH (2011) Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth Res 109(1–3):115–122. https://doi.org/10.1007/s11120-011-9643-3

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm C, Buchel C, Fisahn J, Goss R, Jakob T, LaRoche J, Lavaud J, Lohr M, Riebesell U, Stehfest K, Valentin K, Kroth PG (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157(2):91–124. https://doi.org/10.1016/j.protis.2006.02.003

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, Ajlani G, Verbavatz JM, Vass I, Kerfeld CA, Kirilovsky D (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18(4):992–1007. https://doi.org/10.1105/tpc.105.040121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witt HT, Zickler A (1974) Vectorial electron flow across the thylakoid membrane, further evidence by kinetic measurements with an electrochromic and electrical method. FEBS Lett 39(2):205–208

    CAS  PubMed  Google Scholar 

  • Zaks J, Amarnath K, Kramer DM, Niyogi KK, Fleming GR (2012) A kinetic model of rapidly reversible nonphotochemical quenching. Proc Natl Acad Sci U S A 109(39):15757–15762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Primak A, Cape J, Bowman MK, Kramer DM, Cramer WA (2004) Characterization of the high-spin heme x in the cytochrome b6f complex of oxygenic photosynthesis. Biochemistry 43(51):16329–16336. https://doi.org/10.1021/bi048363p

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Cruz JA, Kramer DM, Magallanes-Lundback M, DellaPenna D, Sharkey TD (2009) Heat stress reduces the pH component of the transthylakoid proton motive force in light-adapted intact tobacco leaves. Plant Cell Environ 32:1538–1547

    CAS  PubMed  Google Scholar 

  • Zhang R, Kramer DM, Cruz JA, Struck KR, Sharkey TD (2011) The effects of moderately high temperature on zeaxanthin accumulation and decay. Photosynth Res 108:171–181. https://doi.org/10.1007/s11120-011-9672-y

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Eisenhut M, Brandt AM, Carmel D, Silen HM, Vass I, Allahverdiyeva Y, Salminen TA, Aro EM (2012) Operon flv4-flv2 provides cyanobacterial photosystem II with flexibility of electron transfer. Plant Cell 24(5):1952–1971. https://doi.org/10.1105/tpc.111.094417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanazawa, A., Neofotis, P., Davis, G.A., Fisher, N., Kramer, D.M. (2020). Diversity in Photoprotection and Energy Balancing in Terrestrial and Aquatic Phototrophs. In: Larkum, A., Grossman, A., Raven, J. (eds) Photosynthesis in Algae: Biochemical and Physiological Mechanisms. Advances in Photosynthesis and Respiration, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-33397-3_12

Download citation

Publish with us

Policies and ethics