Skip to main content

Constructive Heuristics for Min-Power Bounded-Hops Symmetric Connectivity Problem

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1090))

Abstract

We consider a problem of constructing an energy-efficient bounded diameter communication spanning tree when the vertices are located on a plane, and the energy required to transmit a message between a pair of vertices is proportional to the squared distance between them. For this NP-hard problem, we have developed several approximate heuristic algorithms. The results of a posteriori analysis of solutions constructed by the proposed algorithms are presented.

The research of R. Plotnikov is supported by the Russian Science Foundation (project 18-71-00084, Sections 3, 4, and 5). The research of A. Erzin is supported by the Russian Science Foundation (project 19-71-10012, Sections 1 and 2).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rappaport, T.S.: Wireless Communications: Principles and Practices. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  2. Clementi, A.E.F., Penna, P., Silvestri, R.: Hardness results for the power range assignment problem in packet radio networks. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) APPROX/RANDOM -1999. LNCS, vol. 1671, pp. 197–208. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48413-4_21

    Chapter  Google Scholar 

  3. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet radio networks. Theore. Comput. Sci. 243(1–2), 289–305 (2000)

    Article  MathSciNet  Google Scholar 

  4. Călinescu, G., Măndoiu, I.I., Zelikovsky, A.: Symmetric connectivity with minimum power consumption in radio networks. In: Baeza-Yates, R., Montanari, U., Santoro, N. (eds.) Foundations of Information Technology in the Era of Network and Mobile Computing. ITIFIP, vol. 96, pp. 119–130. Springer, Boston, MA (2002). https://doi.org/10.1007/978-0-387-35608-2_11

    Chapter  Google Scholar 

  5. Cheng, X., Narahari, B., Simha, R., Cheng, M.X., Liu, D.: Strong minimum energy topology in wireless sensor networks: NP-completeness and heuristics. IEEE Trans. Mob. Comput. 2(3), 248–256 (2003)

    Article  Google Scholar 

  6. Chu, T., Nikolaidis, I.: Energy efficient broadcast in mobile ad hoc networks. In: Proceedings AD-HOC Networks and Wireless (2002)

    Google Scholar 

  7. Park, J., Sahni, S.: Power assignment for symmetric communication in wireless networks. In: Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC), Washington, pp. 591–596. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  8. Althaus, E., Calinescu, G., Mandoiu, I.I., Prasad, S.K., Tchervenski, N., Zelikovsky, A.: Power efficient range assignment for symmetric connectivity in static ad hoc wireless networks. Wireless Netw. 12(3), 287–299 (2006)

    Article  Google Scholar 

  9. Erzin, A., Plotnikov, R., Shamardin, Y.: On some polynomially solvable cases and approximate algorithms in the optimal communication tree construction problem. J. Appl. Ind. Math. 7, 142–152 (2013)

    Article  MathSciNet  Google Scholar 

  10. Wolf, S., Merz, P.: Iterated local search for minimum power symmetric connectivity in wireless networks. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 192–203. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01009-5_17

    Chapter  Google Scholar 

  11. Erzin, A., Plotnikov, R.: Using VNS for the optimal synthesis of the communication tree in wireless sensor networks. Electron. Notes Discrete Math. 47, 21–28 (2015)

    Article  MathSciNet  Google Scholar 

  12. Erzin, A., Mladenovic, N., Plotnikov, R.: Variable neighborhood search variants for Min-power symmetric connectivity problem. Comput. Oper. Res. 78, 557–563 (2017)

    Article  MathSciNet  Google Scholar 

  13. Plotnikov, R., Erzin, A., Mladenovic, N.: VNDS for the min-power symmetric connectivity. Optim. Lett. (2018). https://doi.org/10.1007/s11590-018-1324-0

    Article  MATH  Google Scholar 

  14. Clementi, A.E.F., Ferreira, A., Penna, P., Perennes, S., Silvestri, R.: The minimum range assignment problem on linear radio networks. In: Paterson, M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 143–154. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45253-2_14

    Chapter  Google Scholar 

  15. Calinescu, G., Kapoor, S., Sarwat, M.: Bounded-hops power assignment in ad hoc wireless networks. Discrete Appl. Math. 154(9), 1358–1371 (2006)

    Article  MathSciNet  Google Scholar 

  16. Carmi, P., Chaitman-Yerushalmi, L., Trabelsi, O.: On the bounded-hop range assignment problem. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 140–151. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21840-3_12

    Chapter  Google Scholar 

  17. Clementi, A.E.F., Penna, P., Silvestri, R.: On the power assignment problem in radio networks. In: Electronic Colloquium on Computational Complexity (ECCC), (054) (2000)

    Google Scholar 

  18. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Article  Google Scholar 

  19. Julstrom, B.A.: Greedy heuristics for the bounded diameter minimum spanning tree problem. J. Exp. Algorithmics 14(1), 1–14 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Patvardhan, C., Prem Prakash, V., Srivastav, A.: Fast heuristics for large instances of the Euclidean bounded diameter minimum spanning tree problem. Informatica 39, 281–292 (2015)

    MathSciNet  Google Scholar 

  21. Nghia, N.D., Binh, H.T.T.: Heuristic Algorithms for Solving Bounded Diameter Minimum Spanning Tree Problem and Its Application to Genetic Algorithm Development, Greedy Algorithms, Witold Bednorz. IntechOpen (2008). https://doi.org/10.5772/6345

    Google Scholar 

  22. Deo, N., Abdalla, A.: Computing a diameter-constrained minimum spanning tree in parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46521-9_2

    Chapter  Google Scholar 

  23. Gruber, M., Raidl, G.R.: A new 0–1 ILP approach for the bounded diameter minimum spanning tree problem. In: Proceedings of the 2nd International Network Optimization Conference (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Plotnikov .

Editor information

Editors and Affiliations

Appendices

Appendix A: Algorithm Descriptions

figure a
figure b
figure c
figure d
figure e

Appendix B: MILP Formulation

We propose a MILP formulation of the BHMPSCP that is generally based on the ILP formulation of the BDMST from [23]. Let us construct such directed graph \(G^{\prime } = (V, A)\) from the given graph \(G = (V, E)\), that each edge \((i,j) \in E\) corresponds to two oppositely directed arcs \((i, j) \in A\) and \((j,i) \in A\) with the same weight \(c_{ij} = c_{ji}\). Let us introduce the following variables:

  • \(u_{il} = 1\) if the depth of vertex i in a tree equals l and \(u_{il} = 0\) otherwise, \(i = 1, ..., n; l = 0, ..., \lfloor D/2 \rfloor \);

  • \(x_{ij} = 1\) if the arc \((ij) \in A\) belongs to the tree and \(x_{ij} = 0\) otherwise, \(i,j = 1, ..., n\);

  • \(C_i \ge 0\)—maximum weight of an arc adjacent to the vertex i in the tree, \(i = 1, ..., n\);

  • \(r_{ij} = 1\) if \((i,j) \in E\), and the vertices i and j are the centers in the solution to the problem, \(i,j = 1, ..., n\). These variables are used only in the case when D is odd.

We propose two different formulations depending on the parity of D. If D is even then the problem is formulated in a following way:

$$\begin{aligned} \sum _{i = 1}^n{C_i} \rightarrow \min \end{aligned}$$
(1)
$$\begin{aligned} x_{ij}c_{ij} \le C_i, i,j = 1, ..., n \end{aligned}$$
(2)
$$\begin{aligned} x_{ij}c_{ij} \le C_j, i,j = 1, ..., n \end{aligned}$$
(3)
$$\begin{aligned} \sum _{l = 1}^{\lfloor D / 2 \rfloor }{u_{il}} = 1, i = 1, ..., n \end{aligned}$$
(4)
$$\begin{aligned} \sum _{i:(i,j) \in A}{x_{ij}} = 1 - u_{j0}, j = 1, ..., n \end{aligned}$$
(5)
$$\begin{aligned} x_{ij} \le 1 - u_{jl} + u_{i,l-1}, i,j = 1,...n: (i,j) \in A, l = 1, ..., \lfloor D / 2\rfloor \end{aligned}$$
(6)
$$\begin{aligned} \sum _{i = 1}^n{u_{i0}} = 1 \end{aligned}$$
(7)

In this formulation, constraints (2)–(3) bound the maximum weight of the arc in a tree for each vertex i by the corresponding variable \(C_i\) which is used in the minimized function (1). Equation (4) guarantee that for each vertex the only value of depth is assigned. Equations (5) imply that each vertex, except the center, has the only incoming arc and only the center has the depth assigned to 0. Inequalities (6) reflect the fact that for each in-tree arc (ij), the depth of i is less by 1 than the depth of j. Equation (7) ensures that the tree has the only center.

Formulation for the case when D consists of the same minimized function (1) and constraints (2)–(6). But it does not contain the equality (7) since in this case solution should have two centers. In addition, the following constraints are included to the problem formulation in the case when D is odd:

$$\begin{aligned} r_{ij}c_{ij} \le C_i, i,j = 1, ..., n \end{aligned}$$
(8)
$$\begin{aligned} r_{ij}c_{ij} \le C_j, i,j = 1, ..., n \end{aligned}$$
(9)
$$\begin{aligned} \sum _{j:(i,j) \in E}{r_{ij}} = u_{i0}, j = 1, ..., n \end{aligned}$$
(10)
$$\begin{aligned} \sum _{i = 1}^n{u_{i0}} = 2 \end{aligned}$$
(11)

In this formulation, the inequalities (8)–(9) bound below the appropriate variables \(C_i\) by the weight of the edge that connects two centers. Equations (10) imply that only the centers (i.e., the vertices with zero depth) are connected by the special edge that is defined by the variables \(r_{ij}\). And, finally, the equality (11) guarantees that there are two centers in solution.

Appendix C: Tables with Experiment Results

Table 1. Comparison of the experiment’s results obtained by different heuristics with CPLEX.
Table 2. Comparison of the experiment’s results obtained by different heuristics.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Plotnikov, R., Erzin, A. (2019). Constructive Heuristics for Min-Power Bounded-Hops Symmetric Connectivity Problem. In: Bykadorov, I., Strusevich, V., Tchemisova, T. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Communications in Computer and Information Science, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-030-33394-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33394-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33393-5

  • Online ISBN: 978-3-030-33394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics