Skip to main content

Simulation of Flow Regimes of Non-isothermal Liquid Films

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1090))

  • 560 Accesses

Abstract

For moderate Reynolds numbers, a nonlinear partial differential equation of the free surface state of a non-isothermal liquid film is presented. The algorithm was developed and the program was written in Matlab R2017b using the Symbolic Math Toolbox module. The wave characteristics of the liquid film under heat and mass transfer are calculated. The flow regimes of a vertical liquid film with a maximum perturbation growth rate are distinguished, and the effect of temperature gradients and surface viscosity on them is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapitsa, P.L.: Wave flow of thin layers of viscous fluid. Zh. Eksper. Teor. Fiz. 18, 3–28 (1948)

    Google Scholar 

  2. Kapitsa, P.L., Kapitsa, S.P.: Wave flow of thin layers of viscous fluid. Zh. Eksper. Teor. Fiz. 19, 105–120 (1949)

    Google Scholar 

  3. Benjamin, T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574 (1957)

    Article  MathSciNet  Google Scholar 

  4. Binnie, A.M.: Experiments on the onset of wave formation on a film of water flowing down a vertical plane. J. Fluid Mech. N2, 551–554 (1957)

    Article  Google Scholar 

  5. Jones, L.O., Whitaker, S.: An experiment study of falling liquid films. AICHE J. 12(3), 525–529 (1966)

    Article  Google Scholar 

  6. Massot, C., Irani, F., Lightfoot, E.N.: Modified description of wave motion in a falling film. AIChE J. 12, 445–450 (1966)

    Article  Google Scholar 

  7. Stainthorp, F.P., Allen, J.M.: The development of ripples on the surface of a liquid film flowing inside a vertical tube. Trans Inst. Chem. Eng. 43, 785–791 (1965). London

    Google Scholar 

  8. Krantz, W.B., Goren, S.L.: Stability of thin liquid films flowing down a plane. Ind. Eng. Chem. Fundam. 10(1), 91–101 (1971)

    Article  Google Scholar 

  9. Yih, C.S.: Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321–334 (1963)

    Article  Google Scholar 

  10. Whitaker, S.: Effect of surface active agents on the stability of falling liquid films. Ind. Eng. Chem. Fundam. 3, 132–142 (1964)

    Article  Google Scholar 

  11. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45(2), 150–155 (1966)

    Article  MathSciNet  Google Scholar 

  12. Krylov, V.S., Vorotilin, V.P., Levich, V.G.: The theory of wave motion of thin liquid films. Theor. Found. Chem. Technol. 3(4), 499–507 (1969). (in Russian)

    Google Scholar 

  13. Filippov, A.G., Saltanov, G.A., Kukushkin, A.N.: Fluid Flow and Heat and Mass Transfer in the Presence of Surfactants. Energoizdat, Moscow (1988). (in Russian)

    Google Scholar 

  14. Kholpanov, L.P., Shkadov, V.Ya.: Hydrodynamic and Heat and Mass Transfer with Free Surface. Nauka, Moscow (1990). (in Russian)

    Google Scholar 

  15. Gogonin, I., Shemagin, I.: Heat Exchange at Film Condensation and Film Boiling in the Components of NPS. Energoatomizdat, Moscow (1993). (in Russian)

    Google Scholar 

  16. Alekseenko, S.V., Nakoryakov, V.E.: Pokusaev Wave Flow of Liquid Films. Begell House, New York (1994)

    Google Scholar 

  17. Prokudina, L.A., Vyatkin, G.P.: Instability of a nonisothermal liquid film. Dokl. Phys. 43(10), 652–654 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Vlachogiannis, M., Bontozoglou, V.: Observation of solitary wave dynamics film flows. J. Fluid Mech. 435, 191–215 (2001)

    Article  Google Scholar 

  19. Burmistrova, O.A.: Stability of vertical liquid film with consideration of the Marangoni effect and heat exchange with the environment. Appl. Mech. Tech. Phys. 55(3), 17–25 (2014)

    Article  MathSciNet  Google Scholar 

  20. Prokudina, L.A.: Influence of surface tension inhomogeneity on the wave flow of a liquid film. J. Eng. Phys. Thermophys. 87, 165–173 (2014)

    Article  Google Scholar 

  21. Prokudina, L.A.: Nonlinear evolution of perturbations in a thin fluid layer during wave formation. J. Exp. Theor. Phys. 118(3), 480–488 (2014)

    Article  Google Scholar 

  22. Prokudina, L.A.: Nonlinear development of the marangoni instability in liquid films. J. Eng. Phys. Thermophys. 89(4), 921–928 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liudmila Prokudina or Dmitrii Bukharev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prokudina, L., Bukharev, D. (2019). Simulation of Flow Regimes of Non-isothermal Liquid Films. In: Bykadorov, I., Strusevich, V., Tchemisova, T. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2019. Communications in Computer and Information Science, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-030-33394-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33394-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33393-5

  • Online ISBN: 978-3-030-33394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics