Skip to main content

On Combining Stochastic and Deterministic Models

  • Conference paper
  • First Online:
  • 266 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1109))

Abstract

Stochastic models which are applied to model queues where the traffic intensity is greater than one and to health care models which involves huge sized populations such as human cells, viruses etc., faces the challenge of very huge number of states and hence demands huge computational cost. We studied the upper level stochastic effects in some of these models. We found that the upper level stochastic effects can’t be omitted in many situations; but can be remarkably similar to the upper level effects in a differential equation model, closely related to the stochastic model. Given a huge dimensioned stochastic model, we replaced the upper level stochastic effects with the upper level dynamics of a suitably defined differential equation model, to study certain system performance measures. This resulted in a reduction in the computational cost involved with the use of the stochastic model with a large number of states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mehmood, R., Lu, J.A.: Computational Markovian analysis of large systems. J. Manuf. Technol. Manag. 22(6), 804–817 (2011)

    Article  Google Scholar 

  2. Nowak, M.A., Anderson, R.M., Mc Lean, A.R., Wolfs, T.F.W., Goudsmit, J., May, R.M.: Antigenic diversity thresholds and the development of AIDS. Science 254, 963–969 (1991)

    Google Scholar 

  3. Rong, L., Perelson, A.S.: Modeling HIV persistence, the latent reservoir, and viral blips. J. Theor. Biol. 260, 308–331 (2009)

    Article  MathSciNet  Google Scholar 

  4. Nosyk, B., Min, J.E., Lima, V.D., Hogg, R.S., Montaner, J.S.G.: Cost-effectiveness of population-level expansion of highly active antiretroviral treatment for HIV in British Columbia, Canada: a modelling study. Lancet HIV 2, 393–400 (2015)

    Google Scholar 

  5. Wang, X., Tang, S., Song, X., Rong, L.: Mathematical analysis of an HIV latent infection model including both virus-to-cell infection and cell-to-cell transmission. J. Biol. Dyn. (2016). https://doi.org/10.1080/17513758.2016.1242784

    Article  Google Scholar 

  6. Astacio, J., Briere, D., Guillén, M., Martínez, J., Rodríguez, F., Valenzuela-Campos, N.: Mathematical models to study the outbreaks of Ebola. Technical report, Biometrics Unit Technical Report BU-1365-M, Cornell University (1996). https://ecommons.cornell.edu/handle/1813/31962/BU-1365-M.pdf

  7. Moolgavkar, S.H., Venzon, D.J.: Two-event model for carcinogenesis: incidence curves for childhood and adult tumors. Math. Biosci. 47, 55–77 (1979)

    Article  Google Scholar 

  8. Altrock, P.M., Liu, L.L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015)

    Article  Google Scholar 

  9. Conway, J.M., Coombs, D.A.: stochastic model of latently infected cell reactivation and viral blip generation in treated HIV patients. PLoS Comput. Biol. 7(4), e1002033 (2011)

    Article  MathSciNet  Google Scholar 

  10. Viswanath, N.C.: Calculating the expected time to eradicate HIV-1 using a Markov chain. IEEE/ACM Trans. Comput. Biol. Bioinf. 15(1), 60–67 (2018)

    Article  Google Scholar 

  11. Aalen, O.O., Farewell, V.T., De Angelis, D., Day, N.E., Gill, O.N.: A Markov model for HIV disease progression including the effect of HIV diagnosis and treatment: application to AIDS prediction in England and Wales. Stat. Med. 16(19), 2191–2210 (1997)

    Article  Google Scholar 

  12. Granich, R.M., Gilks, C.F., Dye, C., De Cock, K.M., Williams, B.G.: Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 373, 48–57 (2009)

    Article  Google Scholar 

  13. Read, E.L., Tovo-Dwyer, A.A., Chakraborty, A.K.: Stochastic effects are important in intrahost HIV evolution even when viral loads are high. Proc. Natl. Acad. Sci. U.S.A. 10, 19727–19732 (2012)

    Article  Google Scholar 

  14. Hill, A.L., Rosenbloom, D.I.S., Fu, F., Nowak, M.A., Siliciano, R.F.: Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proc. Natl. Acad. Sci. U.S.A. 111, 13475–13480 (2014)

    Article  Google Scholar 

  15. Konrad, B.P., Taylor, D., Conway, J.M., Ogilvie, G.S., Coombs, D.: On the duration of the period between exposure to HIV and detectable infection. Epidemics (2017). https://doi.org/10.1016/j.epidem.2017.03.002

    Article  Google Scholar 

  16. Toth, D.J.A., Gundlapalli, A.V., Khader, K., et al.: Estimates of outbreak risk from new introductions of Ebola with immediate and delayed transmission control. Emerg. Infect. Dis. 21(8), 1402–1408 (2015). https://doi.org/10.3201/eid2108.150170

    Article  Google Scholar 

  17. Bellan, S.E., Pulliam, J.R.C., Pearson, C.A.B., et al.: Statistical power and validity of Ebola vaccine trials in Sierra Leone: a simulation study of trial design and analysis. Lancet Inf. Dis. 15, 703–710 (2015)

    Article  Google Scholar 

  18. Sun, X., Bao, J., Shao, Y.: Mathematical modeling of therapy-induced cancer drug resistance: connecting cancer mechanisms to population survival rates. Sci. Rep. (2016). https://doi.org/10.1038/srep22498

    Article  Google Scholar 

  19. Solomon, D.L.: Time to extinction of a pure death process. Biometrics Unit Mimeo Series BU-360-M. https://ecommons.cornell.edu/bitstream/handle/1813/32450/BU-360-M.pdf

  20. Blankson, J.N., Persaud, D., Siliciano, R.F.: The challenge of viral reservoirs in HIV-1 infection. Ann. Rev. Med. 53, 557–593 (2002)

    Article  Google Scholar 

  21. Finzi, D., Blankson, J., Siliciano, J.D., et al.: Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat. Med. 5(5), 512–517 (1999)

    Article  Google Scholar 

  22. Ramratnam, B., Bonhoeffer, S., Binley, J., et al.: Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354, 1782–1785 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanan C. Viswanath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viswanath, N.C. (2019). On Combining Stochastic and Deterministic Models. In: Dudin, A., Nazarov, A., Moiseev, A. (eds) Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2019. Communications in Computer and Information Science, vol 1109. Springer, Cham. https://doi.org/10.1007/978-3-030-33388-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33388-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33387-4

  • Online ISBN: 978-3-030-33388-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics