Skip to main content

The Effects of Altitude on the Hormonal Response to Physical Exercise

  • Chapter
  • First Online:
Endocrinology of Physical Activity and Sport

Abstract

The neuroendocrine system is deeply involved in the adaptive processes to altitude hypoxia exposure, which require a fine-tuned modulation in the homeostatic steady state of several endocrine and metabolic functions. Physical activity (PA) per se is well-known to induce complex hormonal responses, which greatly depend on the intrinsic characteristics of the exercise bout. Moreover, several variables, such as energy balance and environmental factors, can further influence these metabolic and endocrine adaptive processes. Therefore, the overall effect of altitude and PA on endocrine functions has been studied for many years, although this research field still hides numerous methodological pitfalls that prevent final conclusions from being drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eliakim A, Nemet D. Exercise and the GH-IGF-I axis. In: Hackney AC, Constantini N, editors. Endocrinology of physical activity and sport. 3rd ed. New York, NY: Springer; 2018.

    Google Scholar 

  2. Sutton JR, Lazarus L. Growth hormone and exercise comparison of physiological and pharmacological stimuli. J Appl Physiol. 1976;41:523–7.

    Article  CAS  PubMed  Google Scholar 

  3. Felsing NE, Brasel JA, Cooper DM. Effect of low and high intensity exercise on circulating growth hormone in men. J Clin Endocrinol Metab. 1992;75:157–62.

    CAS  PubMed  Google Scholar 

  4. Gibney J, Healy ML, Sönksen PH. The growth hormone/insulin-like growth factor-I axis in exercise and sport. Endocr Rev. 2007;28:603–24.

    Article  CAS  PubMed  Google Scholar 

  5. Wilk M, Petr M, Krzysztofik M, et al. Endocrine response to high intensity barbell squats performed with constant movement tempo and variable training volume. Neuroendocrinol Lett. 2018;39(4):342–8.

    PubMed  Google Scholar 

  6. Cumming DC. Hormones and athletic performance. In: Felig P, Baxter JD, Frohman LA, editors. Endocrinology and metabolism. 3rd ed. New York, NY: McGraw-Hill; 1995. p. 1837–85.

    Google Scholar 

  7. Weltman A, Weltman JY, Womack CJ, et al. Exercise training decreases the growth hormone (GH) response to acute constant-load exercise. Med Sci Sports Exerc. 1997;29:669–76.

    Article  CAS  PubMed  Google Scholar 

  8. Wideman L, Weltman JY, Hartman ML, et al. Growth hormone release during acute and chronic aerobic and resistance exercise: Recent findings. Sports Med. 2002;32:987–1004.

    Article  PubMed  Google Scholar 

  9. Okada Y, Hikita T, Ishitobi K, et al. Human growth hormone secretion during exposure to hot air in normal adult male subjects. J Clin Endocrinol Metab. 1972;34:759–63.

    Article  CAS  PubMed  Google Scholar 

  10. Christensen SE, Jorgensen OL, Moller N, et al. Characterization of growth hormone release in response to external heating. Comparison to exercise induced release. Acta Endocrinol (Copenh). 1984;107:295–301.

    Article  CAS  Google Scholar 

  11. Cappon JP, Ipp E, Brasel JA, et al. Acute effect of high-fat and high-glucose meals on the growth hormone response to exercise. J Clin Endocrinol Metab. 1993;76:1418–22.

    CAS  PubMed  Google Scholar 

  12. Peyreigne C, Bouix D, Fedou C, et al. Effect of hydration on exercise-induced growth hormone response. Eur J Endocrinol. 2001;145:445–50.

    Article  CAS  PubMed  Google Scholar 

  13. Pritzlaff-Roy CJ, Widemen L, Weltman JY, et al. Gender governs the relationship between exercise intensity and growth hormone release in young adults. J Appl Physiol. 2002;92:2053–60.

    Article  CAS  PubMed  Google Scholar 

  14. Schwarz AJ, Brasel JA, Hintz RL, et al. Acute effect of brief low- and high-intensity exercise on circulating IGF-I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J Clin Endocrinol Metab. 1996;81:3492–7.

    CAS  PubMed  Google Scholar 

  15. Zanconato S, Moromisato DY, Moromisato MY, et al. Effect of training and growth hormone suppression on insulin-like growth factor-I mRNA in young rats. J Appl Physiol. 1994;76:2204–9.

    Article  CAS  PubMed  Google Scholar 

  16. Anand IS, Chandrashekhar Y, Rao SK, et al. Body fluid compartments, renal blood flow, and hormones at 6,000 m in normal subjects. J Appl Physiol. 1993;74:1234–9.

    Article  CAS  PubMed  Google Scholar 

  17. Benso A, Broglio F, Aimaretti G, et al. Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol. 2007;157:733–40.

    Article  CAS  PubMed  Google Scholar 

  18. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70(2):919–27.

    Article  CAS  PubMed  Google Scholar 

  19. Roberts AC, Butterfield GE, Cymerman A, et al. Acclimatization to 4300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81:1762–71.

    Article  CAS  PubMed  Google Scholar 

  20. Braun B, Rock PB, Zamudio S, et al. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol. 2001;91:623–31.

    Article  CAS  PubMed  Google Scholar 

  21. Ramirez G, Herrera R, Pineda D, et al. The effects of high altitude on hypothalamic–pituitary secretory dynamics in men. Clin Endocrinol. 1995;43:11–8.

    Article  CAS  Google Scholar 

  22. Heat D, Williams DR. Endocrine function in man at high altitude. 2nd ed. London: Churchill Livingston; 1981. p. 247–58.

    Google Scholar 

  23. Thissen JP, Ketelslegers JM, Underwood LE. Nutritional regulation of the insulin-like growth factors. Endocr Rev. 1994;15:80–101.

    CAS  PubMed  Google Scholar 

  24. Brooks GA. Increased glucose dependency in circulatory compensated hypoxia. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and mountain medicine. Burlington, VA: Queen City Printers; 1992. p. 213–6.

    Google Scholar 

  25. Engfred K, Kjaer M, Secher NH, et al. Hypoxia and training-induced adaptation of hormonal responses to exercise in humans. Eur J Appl Physiol Occup Physiol. 1994;68(4):303–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sawhney RC, Malhotra AS, Singh T. Glucoregulatory hormones in man at high altitude. Eur J Appl Physiol. 1991;62:286–91.

    Article  CAS  Google Scholar 

  27. Raynaud J, Drouet L, Martineaud JP, Bordachar J, Coudert J, Durand J. Time course of plasma growth hormone during exercise in humans at altitude. J Appl Physiol. 1981;50:229–33.

    Article  CAS  PubMed  Google Scholar 

  28. Sawhney RC, Malhotra AS. Circadian rhythmicity of growth hormone at high altitude in man. Ind J Physiol Pharmacol. 1991;35:55–7.

    CAS  Google Scholar 

  29. Sutton JR. Effect of acute hypoxia on the hormonal response to exercise. J Appl Physiol. 1977;42:587–92.

    Article  CAS  PubMed  Google Scholar 

  30. Yan B, Lai X, Yi L, Wang Y, Hu Y. Effects of five-week resistance training in Hypoxia on hormones and muscle strength. J Strength Cond Res. 2016;30(1):184–93.

    Article  PubMed  Google Scholar 

  31. Van Helder WP, Casey K, Radomski MW. Regulation of growth hormone during exercise by oxygen demand and availability. Eur J Appl Physiol. 1987;56:628–32.

    Article  Google Scholar 

  32. Schmidt W, Doré S, Hilgendorf A, et al. Effects of exercise during normoxia and hypoxia on the growth hormone-insulin-like growth factor I axis. Eur J Appl Physiol. 1995;71:424–30.

    Article  CAS  Google Scholar 

  33. Gutiérrez A, Gonzalez-Gross M, Ruiz JR, et al. Acute exposure to moderate high altitude decreases growth hormone response to physical exercise in untrained subjects. J Sports Med Phys Fitness. 2003;43:554–8.

    PubMed  Google Scholar 

  34. Kjær M, Banhsbo J, Lortie G, et al. Hormonal response to exercise in humans: influence of hypoxia and physical training. Am J Phys. 1988;254:R197–203.

    Google Scholar 

  35. Freemark M, Avril I, Fleenor D, et al. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology. 2002;143:1378–85.

    Article  CAS  PubMed  Google Scholar 

  36. Maccario M, Grottoli S, Razzore P, et al. Effects of glucose load and/or arginine on insulin and growth hormone secretion in hyperprolactinemia and obesity. Eur J Endocrinol. 1996;135(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  37. Bole-Feysot C, Goffin V, Edery M, et al. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–58.

    Article  CAS  PubMed  Google Scholar 

  38. Pellegrini I, Lebrun J, Ali S, et al. Expression of prolactin and its receptor in human lymphoid cells. Mol Endocrinol. 1992;6:1023–31.

    CAS  PubMed  Google Scholar 

  39. Horseman N, Zhao W, Montecino-Rodriguez E, et al. Defective mammopoiesis, but normal hematopoiesis in mice with target disruption of the prolactin gene. EMBO J. 1997;16:6926–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bouchard B, Ormandy C, Di Santo J, et al. Immune system development and function in prolactin receptor-deficient mice. J Immunol. 1999;163:576–82.

    CAS  PubMed  Google Scholar 

  41. Buckley A. Prolactin, lymphocyte growth and survival factor. Lupus. 2001;10:684–90.

    Article  CAS  PubMed  Google Scholar 

  42. Sawhney RC, Chhabra PC, Malhotra AS, et al. Hormone profiles at high altitude in man. Andrologia. 1985;17:178–84.

    Article  CAS  PubMed  Google Scholar 

  43. Knudtzon J, Bogsnes A, Norman N. Changes in prolactin and growth hormone levels during hypoxia and exercise. Horm Metab Res. 1989;21:453–4.

    Article  CAS  PubMed  Google Scholar 

  44. Gonzales GF, Carrillo CE. Low serum prolactin levels in native women at high altitude. Int J Gynecol Obstet. 1993;43:169–75.

    Article  CAS  Google Scholar 

  45. Hackney AC. The male reproductive system and endurance exercise. Med Sci Sports Exerc. 1996;28:180–9.

    Article  CAS  PubMed  Google Scholar 

  46. Hackney AC. Characterization of the prolactin response to prolonged endurance exercise. Acta Kinesiologiae (University of Tartu). 2008;13:31–8.

    Article  Google Scholar 

  47. De Meirleir KL, Baeyens L, L’Hermite-Baleriaux M, et al. Exercise-induced prolactin release is related to anaerobiosis. J Clin Endocrinol Metab. 1985;60:1250–2.

    Article  PubMed  Google Scholar 

  48. Oleshansky MA, Zoltick JM, Herman RH, et al. The influence of fitness on neuroendocrine responses to exhaustive treadmill exercise. Eur J Appl Physiol Occup Physiol. 1990;59:405–10.

    Article  CAS  PubMed  Google Scholar 

  49. Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev. 2001;22:724–63.

    Article  CAS  PubMed  Google Scholar 

  50. Olsen NV, Hansen JM, Kanstrup IL, et al. Renal hemodynamics, tubular function, and response to low-dose dopamine during acute hypoxia in humans. J Appl Physiol. 1993;74:2166–73.

    Article  CAS  PubMed  Google Scholar 

  51. Serebrovskaya TV, Karaban IN, Kolesnikova EE, et al. Geriatric men at altitude: hypoxic ventilatory sensitivity and blood dopamine changes. Respiration. 2000;67:253–60.

    Article  CAS  PubMed  Google Scholar 

  52. Panjwani U, Thakur L, Anand JP, et al. Effect of simulated ascent to 3500 meter on neuro-endocrine functions. Indian J Physiol Pharmacol. 2006;50:250–6.

    CAS  PubMed  Google Scholar 

  53. Markianos M, Kosmidis ML, Sfagos C. Reductions in plasma prolactin during acute erythropoietin administration. Neuro Endocrinol Lett. 2006;27:355–8.

    CAS  PubMed  Google Scholar 

  54. Bouissou P, Brisson GR, Peronnet F, et al. Inhibition of exercise-induced blood prolactin response by acute hypoxia. Can J Sport Sci. 1987;12:49–50.

    CAS  PubMed  Google Scholar 

  55. Verratti V, Ietta F, Paulesu L, Romagnoli R, et al. Physiological effects of high-altitude trekking on gonadal, thyroid hormones and macrophage migration inhibitory factor (MIF) responses in young lowlander women. Physiol Rep. 2017;5(20):e13400 56.

    Article  CAS  Google Scholar 

  56. Brisson GR, Boisvert P, Péronnet F, et al. Face cooling-induced reduction of plasma prolactin response to exercise as part of an integrated response to thermal stress. Eur J Appl Physiol Occup Physio. 1989;58:816–20.

    Article  CAS  Google Scholar 

  57. Reis FM, Ribeiro-de-Oliveira JA, Machado LJ, et al. Plasma prolactin and glucose alterations induced by surgical stress: a single or dual response? Exp Physiol. 1998;83:1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Basu M, Pal K, Prasad R, et al. Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. Int J Androl. 1997;20:153–8.

    Article  CAS  PubMed  Google Scholar 

  59. Jiang H, Jianhua C, Rui W, et al. Exposure to hypoxia at high altitude (5380 m) for 1 year induces reversible effects on semen quality and serum reproductive hormone levels in young male adults. High Alt Med Biol. 2015;16(3):216–22.

    Article  CAS  Google Scholar 

  60. Richalet JP, Letournel M, Souberbielle JC. Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1685–92.

    Article  CAS  PubMed  Google Scholar 

  61. Galbo H. The hormonal response to exercise. Diabetes Metab Rev. 1986;1:385–408.

    Article  CAS  PubMed  Google Scholar 

  62. McMurray RG, Hackney AC. The endocrine system and exercise. In: Garrett W, Kirkendahl D, editors. Exercise & sports science. New York, NY: Williams & Wilkins; 2000. p. 135–62.

    Google Scholar 

  63. Moore AW, Timmerman S, Brownlee KK, et al. Strenuous, fatiguing exercise: relationship of cortisol to circulating thyroid hormones. Int J Endocrinol Metab. 2005;1:18–24.

    Google Scholar 

  64. Loucks AB, Heath EM. Induction of low-T3 syndrome in exercising women occurs at a threshold of energy availability. Am J Phys. 1994;266:R817–23.

    CAS  Google Scholar 

  65. Surks MI. Elevated PBI, free thyroxine and plasma protein concentration in man at high altitude. J Appl Physiol. 1966;21:1185–90.

    Article  CAS  PubMed  Google Scholar 

  66. Snyder LM, Reddy WJ. Thyroid hormone control of erythrocyte 2,3-diphosphoglyceric acid concentrations. Science. 1970;169:879–80.

    Article  CAS  PubMed  Google Scholar 

  67. Surks MI, Beckwitt HJ, Chidsey CA. Changes in plasma thyroxine concentration and metabolism, catecholamine excretion and basal oxygen consumption in man during acute exposure to high altitude. J Clin Endocrinol Metab. 1967;27:789–99.

    Article  CAS  PubMed  Google Scholar 

  68. Kotchen TA, Mougey EH, Hogan RP, et al. Thyroid responses to simulated altitude. J Appl Physiol. 1973;34:165–8.

    Article  CAS  PubMed  Google Scholar 

  69. Stock MJ, Chapman C, Stirling JL, et al. Effects of exercise, altitude and food on blood hormone and metabolite levels. J Appl Physiol. 1978;45:350–4.

    Article  CAS  PubMed  Google Scholar 

  70. Mordes JP, Blume FD, Boyer S, et al. High-altitude pituitary-thyroid dysfunction on Mount Everest. N Engl J Med. 1983;308:1135–8.

    Article  CAS  PubMed  Google Scholar 

  71. Chakraborty S, Samaddar J, Batabyal SK. Thyroid status of humans at high altitude. Clin Chim Acta. 1987;166:111–3.

    Article  CAS  PubMed  Google Scholar 

  72. Sawhney RC, Malhotra AS. Thyroid function in sojourners and acclimatised low landers at high altitude in man. Horm Metab Res. 1991;23:81–4.

    Article  CAS  PubMed  Google Scholar 

  73. Basu M, Pal K, Malhotra AS, et al. Free and total thyroid hormones in humans at extreme altitude. Int J Biometeorol. 1995;39:17–21.

    Article  CAS  PubMed  Google Scholar 

  74. Barnholt KE, Hoffman AR, Rock PB, et al. Endocrine responses to acute and chronic high-altitude exposure (4300 meters): modulating effects of caloric restriction. Am J Physiol Endocrinol Metab. 2006;290:E1078–88.

    Article  CAS  PubMed  Google Scholar 

  75. Hackney AC, Feith S, Pozos R, et al. Effects of altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med. 1995;66:325–9.

    CAS  PubMed  Google Scholar 

  76. Savourey G, Caravel JP, Barnavol B, et al. Thyroid hormone changes in a cold air environment after local cold acclimation. J Appl Physiol. 1994;76:1963–7.

    Article  CAS  PubMed  Google Scholar 

  77. Bernet VJ, Wartofsky L. Thyroid function and exercise. In: Warren MP, Constantini NW, editors. Contemporary endocrinology: sports endocrinology. Totowa, NJ: Humana; 2000. p. 97–118.

    Google Scholar 

  78. Pozos RS, Danzl DF. Human physiological response to cold stress and hypothermia. In: Lounsbury DE, Bellamy RF, Zajtchuk R, editors. Textbooks of military medicine: medical aspects of harsh environments, vol. 1. Falls Church, VA: Department of the Army, Office of The Surgeon General; 2001. p. 351–82.

    Google Scholar 

  79. Westerterp KR, Kayser B. Body mass regulation at altitude. Eur J Gastroenterol Hepatol. 2006;18:1–3.

    Article  PubMed  Google Scholar 

  80. Hamad N, Travis SP. Weight loss at high altitude: pathophysiology and practical implications. Eur J Gastroenterol Hepatol. 2006;18:5–10.

    Article  PubMed  Google Scholar 

  81. Rastogi GK, Malhotra MS, Srivastava MC, et al. Study of the pituitary-thyroid functions at high altitude in man. J Clin Endocrinol Metab. 1977;44:447–52.

    Article  CAS  PubMed  Google Scholar 

  82. León-Velarde F, Richalet JP, Chavez JC, et al. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean guinea pig heart. J Appl Physiol. 1996;81:2229–34.

    Article  PubMed  Google Scholar 

  83. Fischetti F, Fabris B, Zaccaria M, et al. Effects of prolonged high-altitude exposure on peripheral adrenergic receptors in young healthy volunteers. Eur J Appl Physiol. 2000;82:439–45.

    Article  CAS  PubMed  Google Scholar 

  84. Hackney AC. Effects of endurance exercise on the reproductive system of men: the “exercise-hypogonadal male condition”. J Endocrinol Investig. 2008;31:932–8.

    Article  CAS  Google Scholar 

  85. Vingren JL, Kraemer WJ, Ratamess NA, et al. Testosterone physiology in resistance exercise and training: the up-stream regulatory elements. Sports Med. 2010;40:1037–53.

    Article  PubMed  Google Scholar 

  86. Zitzmann M. Exercise, training, and the hypothalamic-pituitary-gonadal axis in men. In: Ghigo E, Lanfranco F, Strasburger CJ, editors. Hormone use and abuse by athletes, vol. 29. New York, NY: Springer; 2011. p. 25–30.

    Chapter  Google Scholar 

  87. Cumming DC, Brunsting LA 3rd, Strich G, et al. Reproductive hormone increases in response to acute exercise in men. Med Sci Sports Exerc. 1986;18:369–73.

    Article  CAS  PubMed  Google Scholar 

  88. Hoffman JR, Maresh CM, Armstrong LE, et al. Effects of hydration state on plasma testosterone, cortisol and catecholamine concentrations before and during mild exercise at elevated temperature. Eur J Appl Physiol Occup Physiol. 1994;69:294–300.

    Article  CAS  PubMed  Google Scholar 

  89. Wheeler GD, Wall SR, Belcastro AN, et al. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984;252:514–6.

    Article  CAS  PubMed  Google Scholar 

  90. MacConnie S, Barkan A, Lampman RM, et al. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986;315:411–7.

    Article  CAS  PubMed  Google Scholar 

  91. McColl EM, Wheeler GD, Gomes P, et al. The effects of acute exercise on pulsatile LH release in high-mileage male runners. Clin Endocrinol. 1989;31:617–21.

    Article  CAS  Google Scholar 

  92. Humpeler E, Skrabal F, Bartsch G. Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin, testosterone, and gonadotropins. Eur J Appl Physiol. 1980;45:167–76.

    Article  CAS  Google Scholar 

  93. Vasankari TJ, Rusko H, Kujala UM, et al. The effects of ski training at altitude and racing on pituitary, adrenal and testicular function in men. Eur J Appl Physiol. 1993;66:221–5.

    Article  CAS  Google Scholar 

  94. Friedl KE, Plymate SR, Bernhard WN, et al. Elevation of plasma estradiol in healthy men during a mountaineering expedition. Horm Metabol Res. 1988;20:239–42.

    Article  CAS  Google Scholar 

  95. Garmendia F, Valdivia H, Castillo O, et al. Hypothalamo-hypophyso-gonadal response to clomiphene citrate at median high altitude. Horm Metab Res. 1982;14:679–80.

    Article  CAS  PubMed  Google Scholar 

  96. Fellmann N, Bedu M, Spielvogel H, et al. Anaerobic metabolism during pubertal development at high altitude. J Appl Physiol. 1988;64:1382–6.

    Article  CAS  PubMed  Google Scholar 

  97. Kryger M, Glas R, Jackson D, et al. Impaired oxygenation during sleep in excessive polycythemia of high altitude: improvement with respiratory stimulation. Sleep. 1978;1:3–17.

    Article  CAS  PubMed  Google Scholar 

  98. Okumura A, Fuse H, Kawauchi Y, et al. Changes in male reproductive function after high altitude mountaineering. High Alt Med Biol. 2003;4:349–53.

    Article  PubMed  Google Scholar 

  99. Guerra-Garcia R. Testosterone metabolism in man exposed to high altitude. Acta Endocrinol Panam. 1971;2:55–9.

    Google Scholar 

  100. De Rosa M, Zarrilli S, Di Sarno A, et al. Hyperprolactinemia in men: clinical and biochemical features and response to treatment. Endocrine. 2003;20:75–82.

    Article  PubMed  Google Scholar 

  101. Regensteiner JG, Woodard WD, Hagerman DD, et al. Combined effects of female hormones and metabolic rate on ventilatory drives in women. J Appl Physiol. 1989;66:808–13.

    Article  CAS  PubMed  Google Scholar 

  102. Saaresranta T, Polo O. Hormones and breathing. Chest. 2002;122:2165–82.

    Article  CAS  PubMed  Google Scholar 

  103. Friedl KE, Moore RJ, Hoyt RW, et al. Endocrine markers of semistarvation in healthy lean men in a multistressor environment. J Appl Physiol. 2000;88:1820–30.

    Article  CAS  PubMed  Google Scholar 

  104. Hackney AC, Premo MC, McMurray RG. Influence of aerobic versus anaerobic exercise on the relationship between reproductive hormones in men. J Sports Sci. 1995;13:305–11.

    Article  CAS  PubMed  Google Scholar 

  105. Bangham CRM, Hackett PH. Effects of high altitude on endocrine function in the sherpas of Nepal. J Endocrinol. 1978;79:147–8.

    Article  CAS  PubMed  Google Scholar 

  106. Verratti V, Di Giulio C, D’Angeli A, et al. Sperm forward motility is negatively affected by short-term exposure to altitude hypoxia. Andrologia. 2016;48:800–6.

    Article  CAS  PubMed  Google Scholar 

  107. Pelliccione F, Verratti V, D’Angeli A, et al. Physical exercise at high altitude is associated with a testicular dysfunction leading to reduced sperm concentration but healthy sperm quality. Fertil Steril. 2011;96(1):28–33.

    Article  PubMed  Google Scholar 

  108. Shaw S, Ghosh D, Kumar U, et al. Impact of high altitude on key determinants of female reproductive health: a review. Int J Biometeorol. 2018;62(11):2045–55.

    Article  PubMed  Google Scholar 

  109. Escudero F, Gonzales GF, Góñez C. Hormone profile during the menstrual cycle at high altitude. Int J Gynaecol Obstet. 1996;55(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  110. Weiner N. Norepinephrine, epinephrine and the sympathomimetic amines. In: Gilman AG, Goodman LS, Gilman A, editors. The pharmacological basis of therapeutics. 6th ed. New York, NY: MacMillan Publishing Co; 1980. p. 138.

    Google Scholar 

  111. Banister EW, Griffiths J. Blood levels of adrenergic amines during exercise. J Appl Physiol. 1972;33(5):674–6.

    Article  CAS  PubMed  Google Scholar 

  112. Rostrup M. Catecholamines, hypoxia and high altitude. Acta Physiol Scand. 1998;162:389–99.

    Article  CAS  PubMed  Google Scholar 

  113. Mazzeo RS, Bender PR, Brooks GA, et al. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Phys. 1991;261(4 Pt 1):E419–24.

    CAS  Google Scholar 

  114. Escourrou P, Johnson DG, Rowell LB. Hypoxemia increases plasma catecholamine concentrations in exercising humans. J Appl Physiol. 1984;57(5):1507–11.

    Article  CAS  PubMed  Google Scholar 

  115. Roberts AC, Reeves JT, Butterfield GE, et al. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996;80(2):605–15.

    Article  CAS  PubMed  Google Scholar 

  116. Antezana AM, Richalet JP, Noriega I, et al. Hormonal changes in normal and polycythemic high altitude natives. J Appl Physiol. 1995;79:795–800.

    Article  CAS  PubMed  Google Scholar 

  117. Raff H. Endocrine adaptation to hypoxia. In: Fregly MJ, Blatteis CM, editors. Handbook of physiology: environmental physiology. New York, NY: Oxford University Press; 1996. p. 1259–75.

    Google Scholar 

  118. Woods DR, O’Hara JP, Boos CJ, et al. Markers of physiological stress during exercise under conditions of normoxia, normobarichypoxia, hypobaric hypoxia, and genuine high altitude. Eur J Appl Physiol. 2017;117(5):893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Raber W, Raffesberg W, Waldhäusl W, et al. Exercise induces excessive normetanephrine responses in hypertensive diabetic patients. Eur J Clin Investig. 2003;33:480–7.

    Article  CAS  Google Scholar 

  120. Mazzeo R. Catecholamine response during 12 days of high-altitude exposure (4,300 m) in women. J Appl Physiol. 1998;84:1151–7.

    Article  CAS  PubMed  Google Scholar 

  121. Asano K, Mazzeo RS, McCullough RE, et al. Relation of sympathetic activation to ventilation in man at 4300 m altitude. Aviat Space Environ Med. 1997;68:104–10.

    CAS  PubMed  Google Scholar 

  122. Williams ES. Salivary electrolyte composition at high altitude. Clin Sci. 1961;21:37–42.

    CAS  PubMed  Google Scholar 

  123. Williams ES. Electrolyte regulation during the adaptation of humans to life at high altitude. Proc R Soc Lond B Biol Sci. 1966;165:266–80.

    Article  CAS  PubMed  Google Scholar 

  124. Frayser R, Rennie ID, Gray GW, et al. Hormonal and electrolyte response to exposure to 17,500 ft. J Appl Physiol. 1975;38:636–42.

    Article  CAS  PubMed  Google Scholar 

  125. Ramirez G, Hammond M, Agosti SJ, et al. Effects of hypoxemia at sea level and high altitude on sodium excretion and hormonal levels. Aviat Space Environ Med. 1992;63:891–8.

    CAS  PubMed  Google Scholar 

  126. Sutton JR, Viol GW, Gray GW, et al. Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression. J Appl Physiol. 1977;43:421–4.

    Article  CAS  PubMed  Google Scholar 

  127. Slater JD, Tuffley RE, Williams ES, et al. Control of aldosterone secretion during acclimatization to hypoxia in man. Clin Sci. 1969;37:327–41.

    CAS  PubMed  Google Scholar 

  128. Rock PB, Kraemer WJ, Fulco CS, et al. Effects of altitude acclimatization on fluid regulatory hormone response to submaximal exercise. J Appl Physiol. 1993;75:1208–15.

    Article  CAS  PubMed  Google Scholar 

  129. Hogan RP, Kotchen TA, Boyd AE, et al. Effect of altitude on renin-aldosterone system and metabolism of water and electrolytes. J Appl Physiol. 1973;35:385–90.

    Article  CAS  PubMed  Google Scholar 

  130. Olsen NV, Kanstrup IL, Richalet JP, et al. Effects of acute hypoxia on renal and endocrine function at rest and during graded exercise in hydrated subjects. J Appl Physiol. 1992;73:2036–43.

    Article  CAS  PubMed  Google Scholar 

  131. Zaccaria M, Rocco S, Noventa D, et al. Sodium regulating hormones at high altitude: basal and post-exercise levels. J Clin Endocrinol Metab. 1998;83:570–4.

    CAS  PubMed  Google Scholar 

  132. Maher JT, Jones LG, Hartley LH, et al. Aldosterone dynamics during graded exercise at sea level and high altitude. J Appl Physiol. 1975;39:18–22.

    Article  CAS  PubMed  Google Scholar 

  133. Convertino VA, Veil LC, Bernauer EM, et al. Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J Appl Physiol. 1981;50:123–8.

    Article  PubMed  Google Scholar 

  134. Shigeoka JW, Colice GL, Ramirez G. Effect of normoxemic and hypoxemic exercise on renin and aldosterone. J Appl Physiol. 1985;59:142–8.

    Article  CAS  PubMed  Google Scholar 

  135. Bouissou P, Péronnet F, Brisson G, et al. Fluid-electrolyte shift and renin-aldosterone responses to exercise under hypoxia. Horm Metab Res. 1987;19:331–4.

    Article  CAS  PubMed  Google Scholar 

  136. Bocqueraz O, Koulmann N, Guigas B, et al. Fluid-regulatory hormone responses during cycling exercise in acute hypobaric hypoxia. Med Sci Sports Exerc. 2004;36:1730–6.

    Article  CAS  PubMed  Google Scholar 

  137. Meehan RT. Renin, aldosterone and vasopressin response to hypoxia during 6 hours of mild exercise. Aviat Space Environ Med. 1986;57:960–5.

    CAS  PubMed  Google Scholar 

  138. Robach P, Déchaux M, Jarrot S, et al. Operation Everest III: role of plasma volume expansion on VO(2)(max) during prolonged high-altitude exposure. J Appl Physiol. 2000;89:29–37.

    Article  CAS  PubMed  Google Scholar 

  139. Robach P, Lafforgue E, Olsen NV, et al. Recovery of plasma volume after 1 week of exposure at 4,350 m. Pflugers Arch. 2002;444:821–8.

    Article  CAS  PubMed  Google Scholar 

  140. Cooke M, Cruttenden R, Mellor A, et al. A pilot investigation into the effects of acute normobaric hypoxia, high altitude exposure and exercise on serum angiotensin-converting enzyme, aldosterone and cortisol. J Renin-Angiotensin-Aldosterone Syst. 2018;19(2):1470320318782782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Richalet JP, Rutgers V, Bouchet P, et al. Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat Space Environ Med. 1989;60:105–11.

    CAS  PubMed  Google Scholar 

  142. Davies CT, Few JD. Effects of exercise on adrenocortical function. J Appl Physiol. 1973;35:887–91.

    Article  CAS  PubMed  Google Scholar 

  143. Duclos M, Guinot M, Le Bouc Y. Cortisol and GH: odd and controversial ideas. Appl Physiol Nutr Metab. 2007;32:895–903.

    Article  CAS  PubMed  Google Scholar 

  144. Hill EE, Zack E, Battaglini C, et al. Exercise and circulating cortisol levels: the intensity threshold effect. J Endocrinol Investig. 2008;31:587–91.

    Article  CAS  Google Scholar 

  145. Häkkinen K, Pakarinen A. Acute hormonal responses to heavy resistance exercise in men and women at different ages. Int J Sports Med. 1995;16:507–13.

    Article  PubMed  Google Scholar 

  146. Davis SN, Galassetti P, Wasserman DH, et al. Effects of gender on neuroendocrine and metabolic counterregulatory responses to exercise in normal man. J Clin Endocrinol Metab. 2000;85:224–30.

    CAS  PubMed  Google Scholar 

  147. Judelson DA, Maresh CM, Yamamoto LM, et al. Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism. J Appl Physiol. 2008;105:816–24.

    Article  PubMed  Google Scholar 

  148. Duclos M, Corcuff J-B, Rashedi M, et al. Trained versus untrained men: different immediate post-exercise responses of pituitary-adrenal axis. A preliminary study. Eur J Appl Physiol. 1997;75:343–50.

    Article  CAS  Google Scholar 

  149. Lawrence DL, Shenker Y. Effect of hypoxic exercise on atrial natriuretic factor and aldosterone regulation. Am J Hypertens. 1991;4(4 Pt 1):341–7.

    Article  CAS  PubMed  Google Scholar 

  150. Bouissou P, Fiet J, Guezennec CY, et al. Plasma adrenocorticotrophin and cortisol responses to acute hypoxia at rest and during exercise. Eur J Appl Physiol Occup Physiol. 1988;57(1):110–3.

    Article  CAS  PubMed  Google Scholar 

  151. Raff H, Tzankoff SP, Fitzgerald RS. ACTH and cortisol responses to hypoxia in dogs. J Appl Physiol. 1981;51:1257–60.

    Article  CAS  PubMed  Google Scholar 

  152. Draper N, Dickson T, Fryer S, et al. Plasma cortisol concentrations and perceived anxiety in response to on-sight rock climbing. Int J Sports Med. 2012;33(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  153. Ou LC, Tenney SM. Adrenocortical function in rats chronically exposed to high altitude. J Appl Physiol. 1979;47(6):1185–7.

    Article  CAS  PubMed  Google Scholar 

  154. Pontremolesi S, Biselli R, Ciniglio Appiani G, et al. Acute hypobaric-hypoxia challenge and salivary cortisol and DHEA-S in healthy male subjects. Aviat Space Environ Med. 2012;83(7):637–42.

    Article  CAS  PubMed  Google Scholar 

  155. Goodyer IM, Park RJ, Netherton CM, et al. Possible role of cortisol and dehydroepiandrosterone in human development and psychopathology. Br J Psychiatry. 2001;179:243–9.

    Article  CAS  PubMed  Google Scholar 

  156. Maresh CM, Noble BJ, Robertson KL, et al. Aldosterone, cortisol, and electrolyte responses to hypobaric hypoxia in moderate-altitude natives. Aviat Space Environ Med. 1985;56(11):1078–84.

    CAS  PubMed  Google Scholar 

  157. Maresh CM, Noble BJ, Robertson KL, et al. Adrenocortical responses to maximal exercise in moderate-altitude natives at 447 Torr. J Appl Physiol. 1984;56(2):482–8.

    Article  CAS  PubMed  Google Scholar 

  158. Djurhuus CB, Gravholt CH, Nielsen S, et al. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. Am J Physiol Endocrinol Metab. 2002;283:E172–7.

    Article  CAS  PubMed  Google Scholar 

  159. Young AJ, Evans WJ, Cymerman A, et al. Sparing effect of chronic high-altitude exposure on muscle glycogen utilization. J Appl Physiol. 1982;52:857–62.

    Article  CAS  PubMed  Google Scholar 

  160. Kin NW, Sanders VM. It takes nerve to tell T and B cells what to do. J Leukoc Biol. 2006;79:1093–104.

    Article  CAS  PubMed  Google Scholar 

  161. Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci. 2002;966:290–303.

    Article  CAS  PubMed  Google Scholar 

  162. Ermolao G, Travain M, Facco C, et al. Relationship between stress hormones and immune response during high-altitude exposure in women. J Endocrinol Investig. 2009;32:889–94.

    Article  CAS  Google Scholar 

  163. Maresh CM, Kraemer WJ, Judelson DA, et al. Effects of high altitude and water deprivation on arginine vasopressin release in men. Am J Physiol Endocrinol Metab. 2004;286(1):E20–4.

    Article  CAS  PubMed  Google Scholar 

  164. Wade CE, Freund BJ, Claybaugh JR. Fluid and electrolyte homeostasis during and following exercise: hormonal and non-hormonal factors. In: Claybaugh JR, Wade CE, editors. Hormonal regulation of fluid and electrolytes: environmental effects. New York, NY: Plenum; 1989. p. 1–44.

    Google Scholar 

  165. Mellor AJ, Boos CJ, Ball S, et al. Copeptin and arginine vasopressin at high altitude: relationship to plasma osmolality and perceived exertion. Eur J Appl Physiol. 2015;115(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  166. Bärtsch P, Maggiorini M, Schobersberger W, et al. Enhanced exercise-induced rise of aldosterone and vasopressin preceding mountain sickness. J Appl Physiol. 1991;71(1):136–43.

    Article  PubMed  Google Scholar 

  167. Wasse LK, Sunderland C, King JA, et al. Influence of rest and exercise at a simulated altitude of 4,000 m on appetite, energy intake, and plasma concentrations of acylated ghrelin and peptide YY. J Appl Physiol. 2012;112(4):552–9.

    Article  CAS  PubMed  Google Scholar 

  168. Aeberli I, Erb A, Spliethoff K, et al. Disturbed eating at high altitude: influence of food preferences, acute mountain sickness and satiation hormones. Eur J Nutr. 2013;52(2):625–35.

    Article  CAS  PubMed  Google Scholar 

  169. Armellini F, Zamboni M, Robbi R, et al. The effects of high altitude trekking on body composition and resting metabolic rate. Horm Metab Res. 1997;29(9):458–61.

    Article  CAS  PubMed  Google Scholar 

  170. Rose MS, Houston CS, Fulco CS, et al. Operation Everest. II: nutrition and body composition. J Appl Physiol. 1988;65(6):2545–51.

    Article  CAS  PubMed  Google Scholar 

  171. Matu J, Deighton K, Ispoglou T, et al. A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at simulated altitude. Physiol Behav. 2017;1(179):353–60.

    Article  CAS  Google Scholar 

  172. Broglio F, Prodam F, Riganti F, et al. Ghrelin: from somatotrope secretion to new perspectives in the regulation of peripheral metabolic functions. Front Horm Res. 2006;35:102–14.

    Article  CAS  PubMed  Google Scholar 

  173. Shukla V, Singh SN, Vats P, et al. Ghrelin and leptin levels of sojourners and acclimatized lowlanders at high altitude. Nutr Neurosci. 2005;8:161–5.

    Article  CAS  PubMed  Google Scholar 

  174. Zaccaria M, Ermolao A, Bonvicini P, et al. Decreased serum leptin levels during prolonged high altitude exposure. Eur J Appl Physiol. 2004;92:249–53.

    Article  CAS  PubMed  Google Scholar 

  175. Bailey DP, Smith LR, Chrismas BC, et al. Appetite and gut hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in normoxic and hypoxic conditions. Appetite. 2015;89:237–45.

    Article  PubMed  Google Scholar 

  176. Leblanc J. Thermogenesis with relation to exercise and exercise-training. Acta Med Scand Suppl. 1986;711:75–81.

    CAS  PubMed  Google Scholar 

  177. Charlot K, Faure C, Antoine-Jonville S. Influence of hot and cold environments on the regulation of energy balance following a single exercise session: a mini-review. Nutrients. 2017;10:9(6).

    Google Scholar 

  178. Deighton K, Barry R, Connon CE, et al. Appetite, gut hormone and energy intake responses to low volume sprint interval and traditional endurance exercise. Eur J Appl Physiol. 2013;113(5):1147–56.

    Article  CAS  PubMed  Google Scholar 

  179. Snyder EM, Carr RD, Deacon CF, et al. Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans. Appl Physiol Nutr Metab. 2008;33(5):929–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Silvio Benso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prencipe, N., Bona, C., Lanfranco, F., Grottoli, S., Benso, A.S. (2020). The Effects of Altitude on the Hormonal Response to Physical Exercise. In: Hackney, A., Constantini, N. (eds) Endocrinology of Physical Activity and Sport. Contemporary Endocrinology. Humana, Cham. https://doi.org/10.1007/978-3-030-33376-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33376-8_19

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-33375-1

  • Online ISBN: 978-3-030-33376-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics