Skip to main content

Mechatronic and Cyber-Physical Systems within the Domain of the Internet of Things

  • Chapter
  • First Online:

Abstract

There has been a shift in emphasis within systems from hardware-oriented to more software-oriented topics integrated in an overlaying communication framework (e.g., cloud-based services). This chapter presents current research in the field of the interaction between mechatronic and cyber-physical systems. It presents solution basics design methods that are illustrated by some real-world applications. The discussed case studies (Smart Home, Bio-mechatronic Systems, Cyber-Physical Production System, Data-driven analysis) provide illustration of applications involving different functional distributions of activity between the 4 key elements of people, data, mechatronics and cyber-physical system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    “The Internet of Things refers to a state where Things (i.e. objects, environments, vehicles and clothing) will have more and more information associated with them and the ability to sense, communicate, network and produce new information, becoming an integral part of the Internet” [1].

References

  1. IoT Special Interest Group (2013) Internet of things and machine to machine communications—challenges: final paper May 2013 @ https://connect.innovateuk.org/web/internet-of-things. Accessed 15 Oct 2016

  2. Lee J, Bagheri B, Kao Hung-An (2015) A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf Lett 3:18–23

    Article  Google Scholar 

  3. Bagheri B, Lee J (2015) Big future for cyber-physical manufacturing systems. Des World, September 2015 @ www.designworldonline.com/big-future-for-cyber-physical-manufacturing-systems/#_. Accessed 12 Aug 2016

  4. Hehenberger P, Bradley D (2016) Mechatronic futures, challenges and solutions for mechatronic systems and their designers. Springer, London

    Google Scholar 

  5. Internet of Things Global Standards Initiative (2016). http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx. Accessed 12 Aug 2016

  6. Harashima F, Tomizuka M, Fukuda T (1996) Mechatronics—what is it, why, and how? IEEE/ASME Trans Mechatron 1:1–4

    Article  Google Scholar 

  7. Tomizuka M (2000) Mechatronics: from the 20th to 21st century. In: Proceedings IFAC conference on mechatronic systems, Darmstadt, Germany

    Google Scholar 

  8. VDI Guideline 2206 (2003) Design methodology for mechatronic systems

    Google Scholar 

  9. Hehenberger P, Poltschak F, Zeman K, Amrhein W (2010) Hierarchical design models in the mechatronic product development process of synchronous machines. Mechatronics 20:864–875

    Article  Google Scholar 

  10. Isermann R (2005) Mechatronic systems. Fundamentals. Springer, London, p 2005

    Google Scholar 

  11. Hehenberger P, Bricogne M, Le Duigou J, Eynard B (2015) Meta-model of PLM for Design of Systems of Systems, In: Proceedings of the PLM international conference (PLM2015), Doha, Qatar, 19–21 Oct

    Google Scholar 

  12. Lee EA (2008) Cyber physical systems: design challenges. In: Proceedings 11th IEEE symposium on object oriented real-time distributed computing (ISORC)

    Google Scholar 

  13. Ordinez L, Alimenti O, Rinland E, Gómez M, Marchetti J (2013) Modeling and specifying requirements for cyber-physical systems. IEEE Latin America Trans 11(1)

    Google Scholar 

  14. Simko G, Lindecker D, Levendovszky T, Jackson EK, Neema S, Sztipanovits J (2013) A framework for unambiguous and extensible specification of DSMLs for cyber-physical systems. In: 20th annual IEEE international conference and workshops on the engineering of computer based systems (ECBS)

    Google Scholar 

  15. EIDD Stockholm Declaration (2004) @ dfaeurope.eu/what-is-dfa/dfa-documents/the-eidd-stockholm-declaration-2004/. Accessed 16 May 2016

  16. Goldsmith S (2000) Universal design. Taylor & Francis Ltd. (Architectural Press)

    Google Scholar 

  17. Marshall R, Case K, Porter M, Summerskill S, Gyi D, Davis P, Sims R (2010) HADRIAN: a virtual approach to design for all. J Eng Des 21(2–3):253–273

    Article  Google Scholar 

  18. Whitney G, Keith S, Bühler C, Hewer S, Lhotska L, Miesenberger K, Sandnes FE, Stephanidis C, Velasco CA (2011) Twenty five years of training and education in ICT design for all and assistive technology. Technol Disabil 23(3):163–170

    Article  Google Scholar 

  19. Clarkson PJ, Coleman R, Keates S, Lebbon C (2003) Inclusive design: design for the whole population. Springer

    Google Scholar 

  20. Communication from the Commission to the Council, the European parliament and the European Economic & Social Committee and the Committee of the Regions—eAccessibility @ eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52005DC0425&from=EN. accessed 12 Aug 2016

  21. Helsper E (2011) The emergence of a digital underclass: digital policies in the UK and evidence for inclusion @ eprints.lse.ac.uk/38615/1/LSEMPPBrief3.pdf. Accessed 16 May 2016

  22. Helsper E (2008) Digital inclusion: an analysis of social disadvantage and the information society. Department for Communities and Local Government

    Google Scholar 

  23. Ordonez TN, Yassuda MS, Cachioni M (2011) Elderly online: effects of a digital inclusion program in cognitive performance. Arch Gerontol Geriatr 53(2):216–219

    Article  Google Scholar 

  24. Aleixo C, Nunes M, Isaias P (2012) Usability and digital inclusion: standards and guidelines. Intl J Public Administration 35(3):221–239

    Article  Google Scholar 

  25. Mervyn K, Simon A, Allen DK (2014) Digital inclusion and social inclusion: a tale of two cities. Inf, Commun Soc 17(9):1086–1104

    Article  Google Scholar 

  26. Suh NP (2001) Axiomatic design, advances and applications. Oxford Series on Advanced Manufacturing, New York

    Google Scholar 

  27. Weber C (2005) CPM/PDD—an extended theoretical approach to modeling products and product development processes. In: Proceedings of the 2nd German-Israeli symposium on advances in methods and systems for development of products and processes, Stuttgart, Germany

    Google Scholar 

  28. Thramboulidis K (2005) Model-integrated mechatronics, toward a new paradigm in the development of manufacturing systems. Trans Ind Inf 1(1)

    Google Scholar 

  29. Hehenberger P (2012) Advances in model-based mechatronic design. Trauner Verlag, Linz ISBN 978-3-99033-041-8

    Google Scholar 

  30. Hehenberger P (2014) Perspectives on hierarchical modeling in mechatronic design. Adv Eng Inform 28(2014):188–197

    Article  Google Scholar 

  31. Hehenberger P (2015) An approach to model-based parametric design of mechatronic systems. Comput-Aided Des Appl, Taylor & Francis, 12(3):282–289. https://doi.org/10.1080/16864360.2014.981456

  32. Veltink PH, Koopman HFJM, van der Helm FCT, Nene AV (2001) Biomechatronics—assisting the impaired motor system. Archives Physiol Biochem 109(1):1–9

    Google Scholar 

  33. Miatliuk K, Sıemıenıako F (2011) Conceptual model for design of human-exoskeleton biomechatronic system. In: 2011, Summer simulation multiconference (SummerSim’11), 27–30 June 2011, World Forum, The Hague, Netherlands, GCMS 2011

    Google Scholar 

  34. Bly S, Schilit B, McDonald DW, Rosario B, Saint-Hilaire Y (2006) Broken expectations in the digital home. In: CHI’06 Extended Abstracts on Human Factors in Computing Systems, pp 568–573

    Google Scholar 

  35. Kirchhof M, Linz S (2005) Component-based development of web-enabled eHome services. Pers Ubiquit Comput 9(5):323–332

    Article  Google Scholar 

  36. Norbisrath U, Armac I, Retkowitz D, Salumaa P (2006) Modelling eHome systems. In: Proceedings 4th international workshop middleware for pervasive & ad-hoc computing (MPAC2006), 4

    Google Scholar 

  37. Dobrev P, Famolari D, Kurzke C, Miller B (2002) Device and service discovery in home networks with OSGi. IEEE Commun Mag 40(8):86–92

    Article  Google Scholar 

  38. Rose B (2001) Home networks: a standards perspective. IEEE Commun Mag 39(12):78–85

    Article  Google Scholar 

  39. Kamilaris A, Pitsillides A, Trifa V (2011) The smart home meets the web of things. Int J Ad Hoc Ubiquitous Comput 7(3):145–154

    Article  Google Scholar 

  40. Makonin S, Bartram L, Popowich F (2013) A smarter smart home: case studies of ambient intelligence. IEEE Pervasive Comput 1:58–66

    Article  Google Scholar 

  41. Cook DJ (2012) How smart is your home? Science 335(6076):1579–1581

    Article  Google Scholar 

  42. Pendyala VS, Shim SSY, Bussler C (2015) The web that extends beyond the world. Computer 48(5):18–25

    Article  Google Scholar 

  43. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805

    Article  Google Scholar 

  44. Cavoukian A (2012) Privacy by design and the emerging personal data ecosystem. In: Information and Privacy Commissioner Ontario @ www.ipc.on.ca/images/Resources/pbd-pde.pdf. Accessed 10 June 2016

  45. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutor 16(1):414–454

    Article  Google Scholar 

  46. CONNECT Advisory Forum (2014) @ ec.europa.eu/digital-agenda/en/connect-advisory-forum-working-groups. Accessed 18 Oct 2015

  47. Tischer H, Verbic G (2011) Towards a smart home energy management system—a dynamic programming approach. In: IEEE conference innovative smart grid technologies Asia (ISGT), pp 1–7

    Google Scholar 

  48. Fadlullah ZM, Fouda MM, Kato N, Takeuchi A, Iwasaki N, Nozaki Y (2011) Toward intelligent machine-to-machine communications in smart grid. IEEE Commun Mag 49(4):60–65

    Article  Google Scholar 

  49. Bhuiyan M, Picking R (2011) A gesture controlled user interface for inclusive design and evaluative study of its usability. J Softw Eng Appl 4(9):513–521

    Article  Google Scholar 

  50. Portet F, Vacher MGolanski C, Roux C, Meillon B (2013) Design and evaluation of a smart home voice interface for the elderly: acceptability and objection aspects. Pers Ubiquit Comput 17(1):127–144

    Article  Google Scholar 

  51. Kühnel C, Westermann T, Hemmert F, Kratz S, Müller A, Möller S (2011) I’m home: Defining and evaluating a gesture set for smart-home control. Intl. J Human-Computer Studies 69(11):693–704

    Article  Google Scholar 

  52. Edlinger G, Holzner C, Guger C (2011) A hybrid brain-computer interface for smart home control. In: Human-computer interaction—interaction techniques & environments. Springer, Berlin, Heidelberg, pp 417–426

    Google Scholar 

  53. Alam MR, Reaz MBI, Ali MAM (2012) A review of smart homes—past, present, and future, IEEE Trans. Syst, Man Cybern, Part C: Appl Rev 42(6):1190–1203

    Article  Google Scholar 

  54. De Silva LC, Morikawa C, Petra IM (2012) State of the art of smart homes. Eng Appl Artif Intell 25(7):1313–1321

    Article  Google Scholar 

  55. Li X, Lu R, Liang X, Shen X, Chen J, Lin X (2011) Smart community: an internet of things application. IEEE Commun Mag 49(11):68–75

    Article  Google Scholar 

  56. Wilson C, Hargreaves T, Hauxwell-Baldwin R (2015) Smart homes and their users: a systematic analysis and key challenges. Pers Ubiquit Comput 19(2):463–476

    Article  Google Scholar 

  57. Albino V, Berardi U, Dangelico RM (2015) Smart cities: definitions, dimensions, performance, and initiatives. J Urban Technol 22(1):3–21

    Article  Google Scholar 

  58. Zajac FE (2002) Biomechanics and muscle coordination of human walking, part I. Gait and Posture 16:215–232

    Article  Google Scholar 

  59. Power Knee (2016) http://www.ossur.co.uk/Pages/16600. Accessed 16 May 2016

  60. Sup F (2008) Design and control of an active electrical knee and ankle prosthesis. In: Biomedical robotics & biomechatronics. 2nd IEEE RAS & EMBS international conference, pp 523–528

    Google Scholar 

  61. Fairbanks DM (2012) Semi-actuated transfemoral prosthetic knee. US Patent

    Google Scholar 

  62. Awad MI, Abouhossein A, Dehghani-Sanij A, Richardson R, Moser D, Zahedi S, Bradley D (2016) Towards a smart semi-active prosthetic leg: preliminary assessment and testing, In: 7th IFAC symposium on mechatronics & 15th mechatronics forum international conference, Loughborough, UK, 5–8 Sept

    Google Scholar 

  63. https://en.m.wikipedia.org/wiki/Industry_4.0. Accessed 2 June 2016

  64. Vogel-Heuser B, Hess D (2016) Guest editorial industry 4.0–prerequisites and visions. IEEE Trans Autom Sci Eng 13:411

    Google Scholar 

  65. Hehenberger P, Egyed A, Zeman K (2010) Consistency checking of mechatronic design models. In: Proc ASME 2010 international design engineering technical conferences & computers and information in engineering conference IDETC/CIE 2010, Montreal, Quebec, Canada

    Google Scholar 

  66. Ding SX (2008) Model-based fault diagnosis techniques. Springer, Berlin, Heidelberg

    Google Scholar 

  67. Isermann R (2006) Fault-diagnosis systems. Springer, Berlin, Heidelberg, p 2006

    Book  Google Scholar 

  68. Reiter R (1987) A theory of diagnosis from first principles. Artif Intell 32(1):57–95

    Article  Google Scholar 

  69. Kogler A, Traxler P (2016) Locating faults in photovoltaic systems data. SCCH Technical Report

    Google Scholar 

  70. Traxler P (2013) Fault detection of large amounts of photovoltaic systems, in Proceedings of the ECML/PKDD 2013 workshop on data analytics for renewable energy integration

    Google Scholar 

  71. Firth SK, Lomas KJ, Rees SJ (2010) A simple model of PV system performance and its use in fault detection. Sol Energy 84:624–635

    Article  Google Scholar 

  72. Chouder A, Silvestre S (2010) Fault detection and automatic supervision methodology for PV systems. Energy Convers Manag 51:1929–1937

    Article  Google Scholar 

  73. Rousseeuw PJ, Leroy AM (2005), Robust regression and outlier detection. Wiley

    Google Scholar 

  74. Pearl J (2000) Causality—models, reasoning, and inference. Cambridge University Press

    Google Scholar 

  75. Koller D, Friedman N (2009), Probabilistic graphical models—principles and techniques. MIT Press

    Google Scholar 

  76. Niggemann O, Windmann S, Volgmann S, Bunte A, Stein B (2015) Using learned models for the root cause analysis of cyber-physical production systems. In Proceedings of the 24th international workshop on principles of diagnosis (DX-2015)

    Google Scholar 

  77. Niggemann O, Stein B, Vodencarevic A, Maier A, Büning HK (2012) Learning behavior models for hybrid timed systems. AAAI 2:1083–1090

    Google Scholar 

  78. Traxler P, Gomez P, Grill T (2015) A robust alternative to correlation networks for identifying faulty systems, in Proceedings of the 26th international workshop on principles of diagnosis (DX-2015)

    Google Scholar 

  79. Kogler A, Traxler P (2016) Efficient and robust median-of-means algorithms with applications to fault detection. SCCH Technical Report

    Google Scholar 

Download references

Acknowledgements

The authors want to thank Thomas Natschläger for helpful comments. The research reported in this Sect. 7.4.4 has been supported by the Austrian Ministry for Transport, Innovation and Technology in the frame of the FFG project Smart Maintenance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hehenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hehenberger, P., Bradley, D., Dehghani, A., Traxler, P. (2019). Mechatronic and Cyber-Physical Systems within the Domain of the Internet of Things. In: Stjepandić, J., Wognum, N., J. C. Verhagen, W. (eds) Systems Engineering in Research and Industrial Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-33312-6_7

Download citation

Publish with us

Policies and ethics