Skip to main content

Systematic Development of Product-Service Systems

  • Chapter
  • First Online:

Abstract

Main problems occurring in Product-Service Systems (PSSs), are due to an inadequate requirements analysis and lack of a strong PSS conceptual design. Problems vary from exceeding budgets, to missing functionalities, unsuccessful market launch, or even project abortion. Furthermore, the special characteristics of a PSS have to be considered already at an early stage of the development process. Requirements Engineering (RE) and design methodology as well as supporting Information and Communication Technologies (ICT) need to establish a common perception of the targeted PSS. At the same time, the inner complexity of PSS leaves requirements analysis, design activities and development tasks fragmented among many disciplines and sometimes conflicting, unstable, unknowable or not fully defined. In this context, a concurrent, transdisciplinary and collaborative design of PSS is required to create feasible and successful solutions. The objective of this chapter is to present a structured approach to face the specific challenges of PSS development in detail, to elaborate a general framework that features a systematic approach for PSS development, and to consider the effects of changes in specific product and service design on a systematic PSS development process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hauksdóttir D, Mortensen NH, Nielsen PE (2013) Identification of a reusable requirements structure for embedded products in a dynamic market environment. Comput Ind 64(4):351–362. https://doi.org/10.1016/j.compind.2012.10.008

    Article  Google Scholar 

  2. Garetti M, Rosa P, Terzi S (2012) Life cycle simulation for the design of product-service systems. Comput Ind 63(4):361–369

    Article  Google Scholar 

  3. Aurich JC, Fuchs C, Wagenknecht C (2006) Life cycle oriented design of technical product-service systems. J Clean Prod 14(17):1480–1494. https://doi.org/10.1016/j.jclepro.2006.01.019

    Article  Google Scholar 

  4. Welp EG, Meier H, Sadek T, Sadek K (2008) Modelling approach for the integrated development of industrial product- service systems. In: Proceeding of 41st CIRP conference on manufacturing systems

    Google Scholar 

  5. Komoto H, Tomiyama T (2008) Integration of a service CAD and a life cycle simulator. CIRP Ann—Manuf Technol 57(1):9–12

    Article  Google Scholar 

  6. Shimomura Y, Hara T, Arai T (2009) A unified representation scheme for effective PSS development. In: CIRP Ann—Manuf Technol, pp 379–382

    Google Scholar 

  7. Marilungo E, Coscia E, Quaglia A, Peruzzini M, Germani M (2016) Open innovation for ideating and designing new product service systems. In: Proceeding of 8th CIRP conference on industrial product service systems, Bergamo, Italy

    Google Scholar 

  8. Sakao T, Shimomura Y (2006) Service engineering: a novel engineering discipline for producers to increase value combining service and product. In: Huisingh D et al. (eds) J Clean Prod 15(6):590–604

    Google Scholar 

  9. Tomiyama A (2005) A design methodology of services. In: Samuel A, Lewis W (eds) DS 35: proceedings ICED 05, the 15th international conference on engineering design. Melbourn, Barton, pp 1970–2014

    Google Scholar 

  10. Komoto H, Tomiyama T (2009) Systematic generation of PSS concepts using a service CAD tool. In: Sakao T, Lindahl M (eds) Introduction to product/service-system design. Springer, London, pp 71–92

    Chapter  Google Scholar 

  11. Sakao T, Shimomura Y, Sundin E, Comstock M (2009) Modeling design objects in CAD system for service/product engineering. Comput Aided Des 41(41):197–213

    Article  Google Scholar 

  12. Shimomura Y, Arai T (2009) Service engineering—methods and tools for effective PSS development. In: Sakao T, Lindahl M (eds) Introduction to product/service-system design. Springer, London, pp 113–136

    Chapter  Google Scholar 

  13. Chirumalla K, Bertoni A, Ericson A, Isaksson O (2013) Knowledge-sharing network for product-service system development: is it atypical? The philosopher’s stone for sustainability. Springer, Berlin, pp 109–114. https://doi.org/10.1007/978-3-642-32847-3_18

  14. Matzen D, Tan A, Andreasen MM (2005) Product/service-systems: proposal for models and terminology. In: Meerkamm H (eds) Design for X: Beiträge zum 16. Symposium. Erlangen: Lehrstuhl für Konstruktionstechnik, pp 27–38

    Google Scholar 

  15. Matzen D (2009) A systematic approach to service oriented product development. Stokkemarke: Scandinavian Digital Printing A/S, Ph.D. thesis

    Google Scholar 

  16. Tan A (2010) Service-oriented product development strategies. Scandinavian Digital Printing A/S, Stokkemarke

    Google Scholar 

  17. Peruzzini M, Marilungo E, Germani (2014b) Functional and ecosystem requirements to design sustainable P-S. In: Advances in transdisciplinary engineering, volume 1: moving integrated product development to service clouds in the global economy, proceedings 21st ISPE Inc. international conference on concurrent engineering (CE2014), pp 768–777. https://doi.org/10.3233/978-1-61499-440-4-768

  18. Müller P (2013) Integrated engineering of products and services—layer-based development methodology for product-service systems. Fraunhofer IRB, Stuttgart

    Google Scholar 

  19. Miller D, Hope Q, Eisenstat R, Foote N, Galbraith J (2002) The problem of solutions: balancing clients and capabilities. Bus Horiz 45(2):3–12. https://doi.org/10.1016/S0007-6813(02)00181-7

    Article  Google Scholar 

  20. Peruzzini M, Germani M, Favi C (2012) Shift from PLM to SLM: a method to support business requirements elicitation for service innovation in Product Lifecycle Management. In: Proceedings of IFIP advances in information and communication technology 388 AICT. Springer, New York, pp 111–123, https://doi.org/10.1007/978-3-642-35758-9_10

  21. Wiesner S, Peruzzini M, Doumeingts G, Thoben KD (2012) Requirements engineering for servitization in manufacturing service ecosystems (MSEE). In: 4th CIRP IPS2 conference, Japan

    Google Scholar 

  22. Peruzzini M, Marilungo E, Germani M (2014a) A QFD-based methodology to support product-service design in manufacturing industry. In: Proceedings of 2014 international conference on engineering, technology and innovation: engineering responsible innovation in products and services ICE 2014, Bergamo, Italy, 23–25 June pp 1–7. https://doi.org/10.1109/ice.2014.6871572

  23. Peruzzini M, Marilungo E, Germani M (2015) Structured requirements elicitation for product-service system. Int J Agile Syst Manag 8(3/4):189–218

    Article  Google Scholar 

  24. Peruzzini M, Marilungo E (2016) User-centred approach for product- service design using virtual mock-ups. In: Proceedings 14th international design conference, DESIGN 2016, Cavtat, Dubrovnik, Croatia, 16–19 May 2016, in DS 84, pp 1805–1814

    Google Scholar 

  25. Mengoni M, Peruzzini M (2016) How to support the design of user-oriented product-related services. Proceedings 18th international conference on human-computer interaction, HCI international 2016, Toronto, Canada, 17–22 July 2016, in distributed, ambient and pervasive interactions, Lecture Notes in Computer Science, vol 9749, pp 103–110. https://doi.org/10.1007/978-3-319-39862-4_10

  26. Nilsson P, Fagerström B (2006) Managing stakeholder requirements in a product modelling system. Comput Ind 57(2):167–177. https://doi.org/10.1016/j.compind.2005.06.003

    Article  Google Scholar 

  27. Elgh F (2007) Modelling and management of manufacturing requirements in design automation systems. In: Loureiro G, Curran R (eds) Complex Syst Concurr Eng. Springer, London, pp 321–328

    Chapter  Google Scholar 

  28. Rouse WB, Sage AP (2009) Handbook of systems engineering and management, 2nd edn. Wiley Series in Systems Engineering and Management. Wiley, Hoboken, NJ

    Google Scholar 

  29. Boehm B, Basili VR (2001) Top 10 list [software development]. Computer 34(1):135–137. https://doi.org/10.1109/2.962984

    Article  Google Scholar 

  30. Nuseibeh B, Easterbrook S (2000) Requirements engineering. In: Finkelstein A (ed) ICSE’00 Proceedings of the conference on the future of software engineering, Limerick, Ireland, pp 35–46. https://doi.org/10.1145/336512.336523

  31. Baxter D, Gao J, Case K, Harding J, Young B, Cochrane S, Dani S (2008) A framework to integrate design knowledge reuse and requirements management in engineering design. Robot Comput-Integr Manuf 24(4):585–593. https://doi.org/10.1016/j.rcim.2007.07.010

    Article  Google Scholar 

  32. Laporti V, Borges MRS, Braganholo VP (2007) A collaborative approach to requirements elicitation. In: 11th international conference on computer supported cooperative work in design, Melbourne, Australia, pp 734–739. https://doi.org/10.1109/cscwd.2007.4281527

  33. Azadegan A, Papamichail KN, Sampaio P (2013) Applying collaborative process design to user requirements elicitation: a case study. Comput Ind 64(7):798–812. https://doi.org/10.1016/j.compind.2013.05.001

    Article  Google Scholar 

  34. Goedkoop MJ, van Halen CJG, Te Riele HRM, Rommens PJM (1999) Product service systems—ecological and economic basics

    Google Scholar 

  35. Baines TS, Lightfoot HW, Evans S, Neely A, Greenough R, Peppard J, Roy R, Shehab E, Braganza A, Tiwari A, Alcock JR, Angus JP, Bastl M, Cousens A, Irving P, Johnson M, Kingston J, Lockett H, Martinez V, Michele P, Tranfield D, Walton IM, Wilson H (2007) State-of-the-art in product-service systems. Proc Inst Mech Eng, Part B: J Eng Manuf 221(10):1543–1552. https://doi.org/10.1243/09544054JEM858

    Article  Google Scholar 

  36. Meier H, Roy R, Seliger G (2010) Industrial product-service systems—IPS2 CIRP annals. Manuf Technol 59(2):607–627. https://doi.org/10.1016/j.cirp.2010.05.004

    Article  Google Scholar 

  37. Pahl G, Beitz W (2007) Konstruktionslehre: Grundlagen erfolgreicher Produktentwicklung; Methoden und Anwendung, 7th edn. Springer-Lehrbuch

    Google Scholar 

  38. van Husen C (2007) Anforderungsanalyse für produktbegleitende Dienstleistungen. IPA-IAO-Forschung und Praxis, Nr. 458. Jost-Jetter, Heimsheim

    Google Scholar 

  39. Berkovich M, Leimeister JM, Krcmar H (2011) Requirements engineering für product service systems. Wirtschaftsinf 53(6):357–370. https://doi.org/10.1007/s11576-011-0301-3

    Article  Google Scholar 

  40. Ehrlenspiel K (2007) Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 3rd edn. Hanser, München

    Google Scholar 

  41. Ulrich KT, Eppinger SD (2012) Product design and development, 5th edn. McGraw-Hill, New York

    Google Scholar 

  42. Ahrens G (2000) Das Erfassen und Handhaben von Produktanforderungen: Methodische Voraussetzungen und Anwendung in der Praxis

    Google Scholar 

  43. Lindemann U (2009) Methodische Entwicklung technischer Produkte. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  44. Liu X, Raorane S, Leu MC (2007) A web-based intelligent collaborative system for engineering design. In: Li WD, McMahon C, Ong SK, Nee AYC (eds) Collaborative product design and manufacturing methodologies and applications. Springer Series in Advanced Manufacturing. Springer, London, pp. 37–58

    Google Scholar 

  45. Murthy DNP, Rausand M, Østerås T (2008) Product reliability: specification and performance. Springer Series in Reliability Engineering. Springer, London

    Book  Google Scholar 

  46. Berkovich M, Leimeister JM, Krcmar H (2009) Suitability of product development methods for hybrid products as bundles of classic products, software and service elements. In: ASME 2009 international design engineering technical conferences and computers and information in engineering conference, San Diego, California, USA, August 30–September 2, pp 885–894. https://doi.org/10.1115/detc2009-86939

  47. Bullinger HJ, Scheer AW, Schneider K (2006) Service Engineering: Entwicklung und Gestaltung innovativer Dienstleistungen, 2nd edn. Springer, Berlin

    Google Scholar 

  48. Bullinger HJ, Schreiner P (2006) Service Engineering: Ein Rahmenkonzept für die systematische Entwicklung von Dienstleistungen. In: Bullinger HJ, Scheer AW (eds) Service engineering. Springer, Berlin/Heidelberg, pp 53–84

    Chapter  Google Scholar 

  49. Spath D, Demuß L (2006) Entwicklung hybrider Produkte - Gestaltung materieller und immaterieller Leistungsbündel. In: Bullinger HJ, Scheer AW (eds) Service engineering. Springer, Berlin/Heidelberg, pp 463–502

    Chapter  Google Scholar 

  50. Ramaswamy R (1996) Design and management of service processes. Engineering process improvement series. Addison-Wesley Pub. Co., Reading, MA

    Google Scholar 

  51. Edvardsson B, Olsson J (1996) Key concepts for new service development. Serv Ind J 16(2):140–164. https://doi.org/10.1080/02642069600000019

    Article  Google Scholar 

  52. Frietzsche U, Maleri R (2006) Dienstleistungsproduktion. In: Bullinger H-J, Scheer A-W (eds) Service engineering. Springer, Berlin/Heidelberg, pp 195–225

    Chapter  Google Scholar 

  53. Kersten W, Kern EM, Zink T (2006) Collaborative service engineering. In: Bullinger HJ, Scheer AW (eds) Service engineering. Springer, Berlin/Heidelberg, pp 341–357. https://doi.org/10.1007/3-540-29473-2_14

  54. Pohl K (2008) Requirements Engineering: Grundlagen, Prinzipien, Techniken, 2nd edn. Dpunkt-Verl, Heidelberg

    Google Scholar 

  55. Kotonya G, Sommerville I (1998) Requeriments engineering processes and techniques. Wiley, New York

    Google Scholar 

  56. van Lamsweerde A (2009) Requirements engineering: from system goals to UML models to software specifications. Wiley, Chichester, England, Hoboken, NJ

    Google Scholar 

  57. Hull E, Jackson K, Dick J (2005) Requirements engineering, 2nd edn. Springer, London

    Google Scholar 

  58. Aurum A, Wohlin C (2005) Engineering and managing software requirements. Springer, Berlin, London

    Book  Google Scholar 

  59. Lanubile F (2009) Collaboration in distributed software development. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, de Lucia A, Ferrucci F (eds) Software engineering. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 174–193

    Google Scholar 

  60. Whitehead J (2007) Collaboration in software engineering: a roadmap. In: Future of software engineering, Minneapolis, MN, USA, pp 214–225. https://doi.org/10.1109/fose.2007.4

  61. Li Z, Rahman QA, Ferrari R, Madhavji NH (2009) Does requirements clustering lead to modular design? In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Glinz M, Heymans P (eds) Requirements engineering: foundation for software quality. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp 233–239

    Google Scholar 

  62. Lindahl M, Sundin E, Sakao T, Shimomura Y (2007) Integrated product and service engineering versus design for environment—a comparison and evaluation of advantages and disadvantages. In: Takata S, Umeda Y (eds) Advances in life cycle engineering for sustainable manufacturing businesses. Springer, London, pp 137–142

    Chapter  Google Scholar 

  63. Aurich JC, Schweitzer E, Fuchs C (2007) Life cycle management of industrial product-service systems. In: Takata S, Umeda Y (eds) Advances in life cycle engineering for sustainable manufacturing businesses. Springer, London, pp 171–176

    Chapter  Google Scholar 

  64. Elnadi M, Shehab E (2015) Main enablers and factors for successful implementation of lean in product-service systems. Int J Agile Syst Manag 8(3–4):332–354

    Article  Google Scholar 

  65. Böhmann T, Langer P, Schermann M (2008) Systematische Überführung von kundenspezifischen IT-Lösungen in integrierte Produkt-Dienstleistungsbausteine mit der SCORE-Methode Wirtschaftsinf 50(3):196–207. https://doi.org/10.1365/s11576-008-0047-8

  66. Vasantha GVA, Roy R, Lelah A, Brissaud D (2012) A review of product–service systems design methodologies. J Eng Des 23(9):635–659. https://doi.org/10.1080/09544828.2011.639712

  67. Maussang N, Sakao T, Zwolinski P, Brissaud D, (2007) A model for designing product-service systems using functional analysis and agent based model. In: 16th international conference on engineering design (ICED’07), Paris, France

    Google Scholar 

  68. Morelli N (2006) Developing new product service systems (PSS): methodologies and operational tools. J Clean Prod 14(17):1495–1501. https://doi.org/10.1016/j.jclepro.2006.01.023

    Article  Google Scholar 

  69. Freitag M, Kremer D, Hirsch M, Zelm M (2013) An approach to standardise a service life cycle management. In: Zelm M, van Sinderen M, Ferraira Pires L, Doumeingts G (eds) Enterprise interoperability. Wiley, Chichester, pp 115–126

    Google Scholar 

  70. Scheithauer G, Kett H, Kaiser J, Hackner S, Hu H, Wirtz G (2010) Business modeling for service engineering. In: Shin SY, Ossowski S, Schumacher M, Palakal MJ, Hung CC (eds) the 2010 ACM symposium, Sierre, Switzerland, p 118. https://doi.org/10.1145/1774088.1774113

  71. Schweitzer E, Fiekers C, Möhrer J (2010) Realisierung investiver Produkt-Service Systeme. In: Aurich JC, Clement MH (eds) Produkt-Service Systeme. Springer, Berlin, Heidelberg, pp 95–116

    Chapter  Google Scholar 

  72. Mont O (2002) Clarifying the concept of product-service system. J Clean Prod 10(3):237–245. https://doi.org/10.1016/S0959-6526(01)00039-7

    Article  Google Scholar 

  73. Lindow K, Müller P, Stark R (2011) NEW job roles in global engineering‐from education to industrial deployment. In: Proceedings of the 18th international conference on engineering design (ICED 11), impacting society through engineering design, vol 8: design education. Lyngby/Copenhagen, Denmark, pp 205–215

    Google Scholar 

  74. Abramovici M, Aidi Y, Jin F, Göbel JC (2012) Lifecycle management von Hybriden Leistungsbündeln. In: Meier H, Uhlmann E (eds) Integrierte Industrielle Sach- und Dienstleistungen. Springer, Berlin, Heidelberg, pp 265–284

    Chapter  Google Scholar 

  75. Müller P, Stark RR, Fraunhofer IP (2014). Integrated engineering of products and services: layer-based development methodology for product-service systems. Fraunhofer Verlag

    Google Scholar 

  76. Clarkson J, Eckert C (2005) Design process improvement: a review of current practice. Springer, London

    Book  Google Scholar 

  77. Larsson A, Ericson Å, Larsson T, Isaksson O, Bertoni M (2010) Engineering 2.0: exploring lightweight technologies for the virtual enterprise. In: Randall D, Salembier P (eds) From CSCW to web 2.0: European developments in collaborative design. Computer supported cooperative work. Springer, London, pp 173–191

    Google Scholar 

  78. Chirumalla K (2013) Managing knowledge for product-service system innovation: the role of web 2.0 technologies. Res Technol Manag 56(2):45–53. https://doi.org/10.5437/08956308x5602045

  79. Nemoto Y, Akasaka F, Shimomura Y (2015) A framework for managing and utilizing product–service system design knowledge. Prod Plan Control 26(14–15):1278–1289. https://doi.org/10.1080/09537287.2015.1033493

    Article  Google Scholar 

  80. Cedergren SI, Elfving SW, Eriksson J, Parida V (2012) Analysis of the industrial product-service systems (IPS2) literature: a systematic review. In: 2012 IEEE 6th international conference on management of innovation & technology (ICMIT 2012), Bali, Indonesia, pp 733–740. https://doi.org/10.1109/icmit.2012.6225897

  81. Zhang D, Hu D, Xu Y, Zhang H (2012) A framework for design knowledge management and reuse for product-service systems in construction machinery industry. Comput Ind 63(4):328–337. https://doi.org/10.1016/j.compind.2012.02.008

    Article  Google Scholar 

  82. Zhu H, Gao J, Cai Q (2015) A product-service system using requirement analysis and knowledge management technologies. Kybernetes 44(5):823–842. https://doi.org/10.1108/K-11-2014-0244

    Article  Google Scholar 

  83. Wewior J (2015) Role-play based assessment of IPS2-specific intellectual capital. Proc CIRP 30:415–420. https://doi.org/10.1016/j.procir.2015.02.127

    Article  Google Scholar 

  84. Bertoni M (2010) Bottom-up knowledge sharing in PSS design. A classification framework. In: Marjanović D (eds) Design 2010: DS 60: proceedings of the 11th international design conference, Dubrovnik, Croatia, Zagreb, pp 1461–1470

    Google Scholar 

  85. Romero D, Rabelo RJ, Molina A (2012) On the management of virtual enterprise’s inheritance between virtual manufacturing & service enterprises: supporting “dynamic” product-service business ecosystems. In: 2012 18th international ICE conference on engineering, technology and innovation (ICE), Munich, Germany, pp 1–11. https://doi.org/10.1109/ice.2012.6297695

  86. Stjepandić J, Verhagen WJC, Liese H, Bermell-Garcia P (2015) Knowledge-based engineering, In: Stjepandic J et al. (eds) Concurrent engineering in the 21st century: foundations, developments and challenges. Springer International, Switzerland, pp 255–286

    Google Scholar 

  87. Baxter D, Roy R, Doultsinou A, Gao J, Kalta M (2009) A knowledge management framework to support product-service systems design. Int J Comput Integr Manuf 22(12):1073–1088. https://doi.org/10.1080/09511920903207464

    Article  Google Scholar 

  88. Kremer D, Leyh J (2010) Mit Technologietreiber-Rollen neue Technologien schneller in Produkte umsetzen B. Dworschak, & A. Karapidis, Professional Traing Facts, pp 49–74

    Google Scholar 

  89. Nergard H, Ericson A (2012) Changes in present product design—opportunities for industrial oriented research. In: 2012 IEEE 3rd international conference on cognitive infocommunications (CogInfoCom), Kosice, Slovakia, pp 499–503. https://doi.org/10.1109/coginfocom.2012.6422032

  90. Mouritsen J, Larsen HT (2005) The 2nd wave of knowledge management: the management control of knowledge resources through intellectual capital information. Manag Account Res 16(3):371–394. https://doi.org/10.1016/j.mar.2005.06.006

    Article  Google Scholar 

  91. Bell S (2006) Lean enterprise systems: using IT for continuous improvement. Wiley Series in Systems Engineering and Management. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  92. van den Ende J, Frederiksen L, Prencipe A (2015) The front end of innovation: organizing search for ideas. J Prod Innov Manag 32(4):482–487. https://doi.org/10.1111/jpim.12213

    Article  Google Scholar 

  93. Budak C, Agrawal D, El Abbadi A (2011) Structural trend analysis for online social networks. Proc VLDB Endow 4(10):646–656. https://doi.org/10.14778/2021017.2021022

    Article  Google Scholar 

  94. McGuinness DL, van Harmelen F (2004) OWL web ontology language overview. W3C Recommendation 10(10)

    Google Scholar 

  95. Nawroth C, Schmedding M, Brocks H, Kaufmann M, Fuchs M, Hemmje M (2015) Towards cloud-based knowledge capturing based on natural language processing. Procedia Comput Sci 68(2015):206–216

    Article  Google Scholar 

  96. Bertoni M, Larsson AC (2010) Coping with the knowledge sharing barriers in product service systems design. In: Horváth I, Mandorli F, Rusak Z (eds) Tools and methods of competitive engineering: proceedings of the eighth international symposium on tools and methods of competitive engineering—TMCE 2010, 12–16 April 2008, Ancona, Italy. Delft University of Technology, Delft, Netherlands, pp 903–914

    Google Scholar 

  97. Nonaka I, Toyama R, Konno N (2000) SECI, Ba and leadership: a unified model of dynamic knowledge creation. Long Range Plan 33(1):5–34. https://doi.org/10.1016/S0024-6301(99)00115-6

    Article  Google Scholar 

  98. Gries B, Restrepo J (2011) KPI measurement in engineering design: a case study. In: Proceeding of international conference on engineering design, ICED11, vol 1, pp 531–537

    Google Scholar 

  99. Deming WE (1992) Quality, productivity and competitive position, MitCenter for Advanced Engineering Study, place

    Google Scholar 

  100. Adams WM (2006) The future of sustainability: re-thinking environment and development in the twenty-first century. In: Technical report, IUCN renowned thinkers meeting

    Google Scholar 

  101. Dombrowski U, Schmidtchen K, Ebentreich D (2013) Ballanced key performance indicators in product development. Int J Mater, Mech Manuf 1(1):27–31

    Google Scholar 

  102. Abramovici M, Jin F, Dang HB (2013) An indicator framework for monitoring IPS2 in the use phase. In: Product-service integration for sustainable solutions, pp 311–322. https://doi.org/10.1007/978-3-642-30820-8_27

  103. Mourtzis D, Doukas M, Fotia S (2015) Performance indicators for the evaluation of product-service systems design: a review. In: Proceeding of IFIP WG 5.7 international conference, Tokyo, Japan, vol 460. https://doi.org/10.1007/978-3-319-22759-7_68

  104. Kerzner HR (2013) Project management metrics, KPIs, and dashboards: a guide to measuring and monitoring project performance. Proj Manag J 43(2):102. https://doi.org/10.1002/pmj.21263

    Article  Google Scholar 

  105. McAloone TC, Mougaard K, Restrepo J, Knudsen S (2010) Eco-innovation in the value chain. In: Proceedings of international design conference, Dubrovinik, Croatia

    Google Scholar 

  106. Aurich JC, Mannweiler E, Schweitzer E (2010) How to design and offer services successfully. Proc CIRP J Manuf Sci Technol 2(3):136–143. https://doi.org/10.1016/j.cirpj.2010.03.002

    Article  Google Scholar 

  107. Jeswiet J (2009) A definition for life cycle engineering. In: Proceedings of 36th international seminar on manufacturing systems, Saarbrucken, Germany

    Google Scholar 

  108. ISO 14040:2006 (2006) Environmental management—life cycle assessment—principles and framework

    Google Scholar 

  109. Woodward DG (1997) Life cycle costing—theory, information acquisition and application. J Proj Manag 15(6):335–344

    Google Scholar 

  110. Weidema B (2006) The integration of economic and social aspects in life cycle impact assessment. Int J Life Cycle Assess 11(1):89–96. https://doi.org/10.1065/lca2006.04.016

    Article  Google Scholar 

  111. Peruzzini M, Marilungo E, Germani M (2013b) Product-service sustainability assessment in virtual manufacturing enterprises. IFIP International Federation for Information Processing AICT 408, Proceedings 14th IFIP WG 5.5 working conference on virtual enterprises, PRO-VE 2013, Dresden (Germany), 30 September–2 October 2013, Camarinha-Matos LM, Scherer RJ (eds), pp 13–21. ISSN 1868-4238, ISBN 978-3-642-40542-6. https://doi.org/10.1007/978-3-642-40543-3

  112. Kwak M, Kim H (2013) Economic and environmental impacts of product service lifetime: a life-cycle perspective. In: Proceedings of 5th CIRP international conference on industrial product-service systems, Bochum, Germany. https://doi.org/10.1007/978-3-642-30820-8_16

  113. Wognum N, Bil C, Elgh F, Peruzzini M, Stjepandić J, Verhagen WJC (2019) Transdisciplinary systems engineering: implications, challenges and research agenda. Int J Agile Syst Manag 12(1):58–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Peruzzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peruzzini, M., Wiesner, S. (2019). Systematic Development of Product-Service Systems. In: Stjepandić, J., Wognum, N., J. C. Verhagen, W. (eds) Systems Engineering in Research and Industrial Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-33312-6_10

Download citation

Publish with us

Policies and ethics