Skip to main content

Signals Modulating Cyclic di-GMP Pathways in Vibrio cholerae

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

Vibrio cholerae is an aquatic bacterium that is also the causative agent of the diarrheal disease cholera. In this bacterium, the secondary messenger, cyclic di-GMP, regulates the lifestyle transition between a motile state and a sessile biofilm state as well as other key processes such as virulence factor production. The V. cholerae genome encodes 62 proteins that contain GGDEF, EAL, or HD-GYP domains that are predicted to be involved in the synthesis or degradation of cyclic di-GMP. Presumably, one or more signals modulate the activity of each of these proteins to regulate cyclic di-GMP levels in the cell; however, to date, only a few of these signals have been elucidated. In this chapter, we present our current knowledge about the signals that have an effect on cyclic di-GMP signaling in V. cholerae and the signaling networks that play direct or indirect roles in processing these signals. These signals include polyamines, bile acids, temperature, and molecular oxygen. We also discuss how cyclic di-GMP signaling networks interact with other signal transduction pathways, such as quorum sensing, to regulate behavior. In addition to the many unidentified signals, there are other gaps in our knowledge including how signal specificity and processing is achieved and what is the nature and the extent of crosstalk among cyclic di-GMP and other signal transduction networks. Future research addressing these questions will help us better understand how V. cholerae assimilates cues in both aquatic habitats and host organisms to optimize its response to specific environments through cyclic di-GMP signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prouty MG, Correa NE, Klose KE (2001) The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol 39(6):1595–1609

    Article  CAS  PubMed  Google Scholar 

  2. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73(2):310–347. https://doi.org/10.1128/MMBR.00041-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8(1):48–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168(4):1487–1492

    Article  CAS  PubMed  Google Scholar 

  5. Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64(7):2853–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tamayo R, Patimalla B, Camilli A (2010) Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun 78(8):3560–3569. https://doi.org/10.1128/IAI.00048-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tischler AD, Camilli A (2005) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73(9):5873–5882. https://doi.org/10.1128/IAI.73.9.5873-5882.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tischler AD, Camilli A (2004) Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53(3):857–869. https://doi.org/10.1111/j.1365-2958.2004.04155.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. https://doi.org/10.1128/MMBR.00043-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A (2007) Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2(4):264–277. https://doi.org/10.1016/j.chom.2007.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  12. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431

    Article  CAS  PubMed  Google Scholar 

  13. Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64(4):847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S (2005) Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci USA 102(46):16819–16824. https://doi.org/10.1073/pnas.0505350102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5(4):647–656

    Article  CAS  PubMed  Google Scholar 

  17. Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181(11):3606–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Beyhan S, Tischler AD, Camilli A, Yildiz FH (2006) Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol 188(10):3600–3613. https://doi.org/10.1128/JB.188.10.3600-3613.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, Banakar V, Cegelski L, Wong GC, Yildiz FH (2015) C-di-GMP regulates motile to sessile transition by modulating MshA pili biogenesis and near-surface motility behavior in Vibrio cholerae. PLoS Pathog 11(10):e1005068. https://doi.org/10.1371/journal.ppat.1005068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, Goodson JR, Galperin MY, Yildiz FH, Lee VT (2015) Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLoS Pathog 11(10):e1005232. https://doi.org/10.1371/journal.ppat.1005232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 7:12481. https://doi.org/10.1038/ncomms12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34(3):586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96(7):4028–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fong JC, Karplus K, Schoolnik GK, Yildiz FH (2006) Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol 188(3):1049–1059. https://doi.org/10.1128/JB.188.3.1049-1059.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fong JC, Yildiz FH (2007) The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 189(6):2319–2330. https://doi.org/10.1128/JB.01569-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moorthy S, Watnick PI (2005) Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol 57(6):1623–1635. https://doi.org/10.1111/j.1365-2958.2005.04797.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beyhan S, Yildiz FH (2007) Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets c-di-GMP signalling pathway. Mol Microbiol 63(4):995–1007. https://doi.org/10.1111/j.1365-2958.2006.05568.x

    Article  CAS  PubMed  Google Scholar 

  28. Casper-Lindley C, Yildiz FH (2004) VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol 186(5):1574–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zamorano-Sanchez D, Fong JC, Kilic S, Erill I, Yildiz FH (2015) Identification and characterization of VpsR and VpsT binding sites in Vibrio cholerae. J Bacteriol 197(7):1221–1235. https://doi.org/10.1128/JB.02439-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yildiz FH, Dolganov NA, Schoolnik GK (2001) VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol 183(5):1716–1726. https://doi.org/10.1128/JB.183.5.1716-1726.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H (2010) Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327(5967):866–868. https://doi.org/10.1126/science.1181185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Srivastava D, Harris RC, Waters CM (2011) Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J Bacteriol 193(22):6331–6341. https://doi.org/10.1128/JB.05167-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hsieh ML, Hinton DM, Waters CM (2018) VpsR and cyclic di-GMP together drive transcription initiation to activate biofilm formation in Vibrio cholerae. Nucleic Acids Res 46(17):8876–8887. https://doi.org/10.1093/nar/gky606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beyhan S, Odell LS, Yildiz FH (2008) Identification and characterization of cyclic diguanylate signaling systems controlling rugosity in Vibrio cholerae. J Bacteriol 190(22):7392–7405. https://doi.org/10.1128/JB.00564-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lim B, Beyhan S, Meir J, Yildiz FH (2006) Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Mol Microbiol 60(2):331–348. https://doi.org/10.1111/j.1365-2958.2006.05106.x

    Article  CAS  PubMed  Google Scholar 

  36. Liu X, Beyhan S, Lim B, Linington RG, Yildiz FH (2010) Identification and characterization of a phosphodiesterase that inversely regulates motility and biofilm formation in Vibrio cholerae. J Bacteriol 192(18):4541–4552. https://doi.org/10.1128/JB.00209-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conner JG, Zamorano-Sanchez D, Park JH, Sondermann H, Yildiz FH (2017) The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 36:20–29. https://doi.org/10.1016/j.mib.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Correa NE, Lauriano CM, McGee R, Klose KE (2000) Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization. Mol Microbiol 35(4):743–755

    Article  CAS  PubMed  Google Scholar 

  39. Srivastava D, Hsieh ML, Khataokar A, Neiditch MB, Waters CM (2013) Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol Microbiol 90(6):1262–1276. https://doi.org/10.1111/mmi.12432

    Article  CAS  PubMed  Google Scholar 

  40. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6. https://doi.org/10.1093/bioinformatics/bti739

    Article  CAS  PubMed  Google Scholar 

  41. Pratt JT, Tamayo R, Tischler AD, Camilli A (2007) PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J Biol Chem 282(17):12860–12870. https://doi.org/10.1074/jbc.M611593200

    Article  CAS  PubMed  Google Scholar 

  42. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413. https://doi.org/10.1126/science.1159519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pursley BR, Maiden MM, Hsieh ML, Fernandez NL, Severin GB, Waters CM (2018) Cyclic di-GMP regulates TfoY in Vibrio cholerae to control motility by both transcriptional and posttranscriptional mechanisms. J Bacteriol 200(7). https://doi.org/10.1128/JB.00578-17

  44. Metzger LC, Stutzmann S, Scrignari T, Van der Henst C, Matthey N, Blokesch M (2016) Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 15(5):951–958. https://doi.org/10.1016/j.celrep.2016.03.092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Syed KA, Beyhan S, Correa N, Queen J, Liu J, Peng F, Satchell KJ, Yildiz F, Klose KE (2009) The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 191(21):6555–6570. https://doi.org/10.1128/JB.00949-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Krebs SJ, Taylor RK (2011) Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J Bacteriol 193(19):5260–5270. https://doi.org/10.1128/JB.00378-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI (2007) Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 266(2):129–137. https://doi.org/10.1111/j.1574-6968.2006.00545.x

    Article  CAS  PubMed  Google Scholar 

  48. King CA, Van Heyningen WE (1973) Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J Infect Dis 127(6):639–647

    Article  CAS  PubMed  Google Scholar 

  49. Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyltransferase activity with arginine as an acceptor. J Biol Chem 252(7):2455–2457

    CAS  PubMed  Google Scholar 

  50. Peterson JW, Hejtmancik KE, Markel DE, Craig JP, Kurosky A (1979) Antigenic specificity of neutralizing antibody to cholera toxin. Infect Immun 24(3):774–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. DiRita VJ, Parsot C, Jander G, Mekalanos JJ (1991) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88(12):5403–5407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Higgins DE, Nazareno E, DiRita VJ (1992) The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J Bacteriol 174(21):6974–6980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kovacikova G, Skorupski K (2001) Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 41(2):393–407

    Article  CAS  PubMed  Google Scholar 

  54. Hase CC, Mekalanos JJ (1998) TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95(2):730–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krukonis ES, Yu RR, Dirita VJ (2000) The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol 38(1):67–84

    Article  CAS  PubMed  Google Scholar 

  56. Tischler AD, Lee SH, Camilli A (2002) The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production. J Bacteriol 184(15):4104–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez-Wilson HF, Tamayo R, Tischler AD, Lazinski DW, Camilli A (2008) The Vibrio cholerae hybrid sensor kinase VieS contributes to motility and biofilm regulation by altering the cyclic diguanylate level. J Bacteriol 190(19):6439–6447. https://doi.org/10.1128/JB.00541-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dey AK, Bhagat A, Chowdhury R (2013) Host cell contact induces expression of virulence factors and VieA, a cyclic di-GMP phosphodiesterase, in Vibrio cholerae. J Bacteriol 195(9):2004–2010. https://doi.org/10.1128/JB.02127-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beyhan S, Tischler AD, Camilli A, Yildiz FH (2006) Differences in gene expression between the classical and El Tor biotypes of Vibrio cholerae O1. Infect Immun 74(6):3633–3642. https://doi.org/10.1128/IAI.01750-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kariisa AT, Grube A, Tamayo R (2015) Two nucleotide second messengers regulate the production of the Vibrio cholerae colonization factor GbpA. BMC Microbiol 15:166. https://doi.org/10.1186/s12866-015-0506-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reidl J, Klose KE (2002) Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26(2):125–139. https://doi.org/10.1111/j.1574-6976.2002.tb00605.x

    Article  CAS  PubMed  Google Scholar 

  62. Kariisa AT, Weeks K, Tamayo R (2016) The RNA domain Vc1 regulates downstream gene expression in response to cyclic diguanylate in Vibrio cholerae. PLoS One 11(2):e0148478. https://doi.org/10.1371/journal.pone.0148478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Johnson TL, Fong JC, Rule C, Rogers A, Yildiz FH, Sandkvist M (2014) The Type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol 196(24):4245–4252. https://doi.org/10.1128/JB.01944-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sandkvist M, Michel LO, Hough LP, Morales VM, Bagdasarian M, Koomey M, DiRita VJ, Bagdasarian M (1997) General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol 179(22):6994–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sloup RE, Konal AE, Severin GB, Korir ML, Bagdasarian MM, Bagdasarian M, Waters CM (2017) Cyclic di-GMP and VpsR induce the expression of type II secretion in Vibrio cholerae. J Bacteriol 199(19). https://doi.org/10.1128/JB.00106-17

  66. Karran P, Lindahl T, Ofsteng I, Evensen GB, Seeberg E (1980) Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase. J Mol Biol 140(1):101–127

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez NL, Srivastava D, Ngouajio AL, Waters CM (2018) Cyclic di-GMP positively regulates DNA repair in Vibrio cholerae. J Bacteriol 200(15). https://doi.org/10.1128/JB.00005-18

  68. Kovacikova G, Lin W, Skorupski K (2005) Dual regulation of genes involved in acetoin biosynthesis and motility/biofilm formation by the virulence activator AphA and the acetate-responsive LysR-type regulator AlsR in Vibrio cholerae. Mol Microbiol 57(2):420–433. https://doi.org/10.1111/j.1365-2958.2005.04700.x

    Article  CAS  PubMed  Google Scholar 

  69. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790. https://doi.org/10.1146/annurev.bi.53.070184.003533

    Article  CAS  PubMed  Google Scholar 

  70. McGinnis MW, Parker ZM, Walter NE, Rutkovsky AC, Cartaya-Marin C, Karatan E (2009) Spermidine regulates Vibrio cholerae biofilm formation via transport and signaling pathways. FEMS Microbiol Lett 299(2):166–174. https://doi.org/10.1111/j.1574-6968.2009.01744.x

    Article  CAS  PubMed  Google Scholar 

  71. Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187(21):7434–7443. https://doi.org/10.1128/JB.187.21.7434-7443.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sobe RC, Bond WG, Wotanis CK, Zayner JP, Burriss MA, Fernandez N, Bruger EL, Waters CM, Neufeld HS, Karatan E (2017) Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J Biol Chem 292(41):17025–17036. https://doi.org/10.1074/jbc.M117.801068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hamana K (1997) Polyamine distribution patterns within the families Aeromonadaceae, Vibrionaceae, Pasteurellaceae, and Halomonadaceae, and related genera of the gamma subclass of the Proteobacteria. J Gen Appl Microbiol 43(1):49–59

    Article  CAS  PubMed  Google Scholar 

  74. Hamana K, Matsuzaki S (1982) Widespread occurrence of norspermidine and norspermine in eukaryotic algae. J Biochem 91(4):1321–1328

    Article  CAS  PubMed  Google Scholar 

  75. Michael AJ (2016) Polyamines in eukaryotes, bacteria, and archaea. J Biol Chem 291(29):14896–14903. https://doi.org/10.1074/jbc.R116.734780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E, Muramatsu K, Nakamura A, Yamashita A, Kitada Y, Kakeyama M, Benno Y, Matsumoto M (2014) Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4:4548. https://doi.org/10.1038/srep04548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Osborne DL, Seidel ER (1990) Gastrointestinal luminal polyamines: cellular accumulation and enterohepatic circulation. Am J Phys 258(4 Pt 1):G576–G584. https://doi.org/10.1152/ajpgi.1990.258.4.G576

    Article  CAS  Google Scholar 

  78. Pegg AE (2016) Functions of polyamines in mammals. J Biol Chem 291(29):14904–14912. https://doi.org/10.1074/jbc.R116.731661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cockerell SR, Rutkovsky AC, Zayner JP, Cooper RE, Porter LR, Pendergraft SS, Parker ZM, McGinnis MW, Karatan E (2014) Vibrio cholerae NspS, a homologue of ABC-type periplasmic solute binding proteins, facilitates transduction of polyamine signals independent of their transport. Microbiology 160(Pt 5):832–843. https://doi.org/10.1099/mic.0.075903-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schaller RA, Ali SK, Klose KE, Kurtz DM Jr (2012) A bacterial hemerythrin domain regulates the activity of a Vibrio cholerae diguanylate cyclase. Biochemistry 51(43):8563–8570. https://doi.org/10.1021/bi3011797

    Article  CAS  PubMed  Google Scholar 

  81. Townsley L, Sison Mangus MP, Mehic S, Yildiz FH (2016) Response of Vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl Environ Microbiol 82(14):4441–4452. https://doi.org/10.1128/AEM.00807-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hung DT, Zhu J, Sturtevant D, Mekalanos JJ (2006) Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59(1):193–201. https://doi.org/10.1111/j.1365-2958.2005.04846.x

    Article  CAS  PubMed  Google Scholar 

  83. Koestler BJ, Waters CM (2014) Bile acids and bicarbonate inversely regulate intracellular cyclic di-GMP in Vibrio cholerae. Infect Immun 82(7):3002–3014. https://doi.org/10.1128/IAI.01664-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pratt JT, McDonough E, Camilli A (2009) PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J Bacteriol 191(21):6632–6642. https://doi.org/10.1128/JB.00708-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hammer BK, Bassler BL (2009) Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 191(1):169–177. https://doi.org/10.1128/JB.01307-08

    Article  CAS  PubMed  Google Scholar 

  86. Waters CM, Lu W, Rabinowitz JD, Bassler BL (2008) Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. J Bacteriol 190(7):2527–2536. https://doi.org/10.1128/JB.01756-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110(3):303–314

    Article  CAS  PubMed  Google Scholar 

  88. Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118(1):69–82. https://doi.org/10.1016/j.cell.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  89. Hammer BK, Bassler BL (2007) Regulatory small RNAs circumvent the conventional quorum sensing pathway in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 104(27):11145–11149. https://doi.org/10.1073/pnas.0703860104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhao X, Koestler BJ, Waters CM, Hammer BK (2013) Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol Microbiol 89(5):989–1002. https://doi.org/10.1111/mmi.12325

    Article  CAS  PubMed  Google Scholar 

  91. Joelsson A, Liu Z, Zhu J (2006) Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect Immun 74(2):1141–1147. https://doi.org/10.1128/IAI.74.2.1141-1147.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dahlstrom KM, Collins AJ, Doing G, Taroni JN, Gauvin TJ, Greene CS, Hogan DA, O’Toole GA (2018) A multimodal strategy used by a large c-di-GMP network. J Bacteriol 200(8). https://doi.org/10.1128/JB.00703-17

  93. Liu Z, Wang Y, Liu S, Sheng Y, Rueggeberg KG, Wang H, Li J, Gu FX, Zhong Z, Kan B, Zhu J (2015) Vibrio cholerae represses polysaccharide synthesis to promote motility in mucosa. Infect Immun 83(3):1114–1121. https://doi.org/10.1128/IAI.02841-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ymele-Leki P, Houot L, Watnick PI (2013) Mannitol and the mannitol-specific enzyme IIB subunit activate Vibrio cholerae biofilm formation. Appl Environ Microbiol 79(15):4675–4683. https://doi.org/10.1128/AEM.01184-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Massie JP, Reynolds EL, Koestler BJ, Cong JP, Agostoni M, Waters CM (2012) Quantification of high-specificity cyclic diguanylate signaling. Proc Natl Acad Sci USA 109(31):12746–12751. https://doi.org/10.1073/pnas.1115663109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ece Karatan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Young, E., Bonds, G., Karatan, E. (2020). Signals Modulating Cyclic di-GMP Pathways in Vibrio cholerae . In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_22

Download citation

Publish with us

Policies and ethics