Skip to main content

Cyclic di-AMP in Bacillus subtilis Biofilm Formation

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

Bacillus subtilis is a soil-dwelling bacterium that forms highly structured microbial communities called biofilms. Biofilm formation is important for bacterial survival, as biofilms are highly tolerant to environmental stresses. In B. subtilis, the formation of biofilms facilitates important interactions with plants. While the genetic regulation of biofilm formation is highly studied in B. subtilis, little is known regarding the molecular details of how signaling molecules feed into the biofilm regulatory network of this bacterium. Recent studies found that the second messenger cyclic di-adenylate monophosphate (cyclic di-AMP) plays an important role in B. subtilis biofilm formation and plant attachment. B. subtilis secretes cyclic di-AMP via three putative cyclic di-AMP transporters, suggesting that cyclic di-AMP can act as an extracellular signal for biofilm formation and plant attachment. Here, we discuss how cyclic di-AMP metabolism and secretion impact colony biofilm architecture, biofilm gene expression, and plant attachment in B. subtilis and speculate on future directions for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  2. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  3. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  4. Hobley L, Harkins C, Macphee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669. https://doi.org/10.1093/femsre/fuv015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dragoš A, Kovács ÁT (2017) The peculiar functions of the bacterial extracellular matrix. Trends Microbiol 25:257–266. https://doi.org/10.1016/j.tim.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  6. Nadell CD, Drescher K, Wingreen NS, Bassler BL (2015) Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME J 9:1700–1709. https://doi.org/10.1038/ismej.2014.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210. https://doi.org/10.1038/nrmicro1838

    Article  CAS  PubMed  Google Scholar 

  8. van Gestel J, Vlamakis H, Kolter R (2015) From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol e1002141:13. https://doi.org/10.1371/journal.pbio.1002141

    Article  CAS  Google Scholar 

  9. Claessen D, Rozen DE, Kuipers OP, Søgaard-Andersen L, van Wezel GP (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12:115–124. https://doi.org/10.1038/nrmicro3178

    Article  CAS  PubMed  Google Scholar 

  10. Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ (2014) Interactions in multispecies biofilms: do they actually matter? Trends Microbiol 22:84–91. https://doi.org/10.1016/j.tim.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  11. Yan J, Nadell CD, Bassler BL (2017) Environmental fluctuation governs selection for plasticity in biofilm production. ISME J 11:1569–1577. https://doi.org/10.1038/ismej.2017.33

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11:157–168. https://doi.org/10.1038/nrmicro2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238. https://doi.org/10.1111/j.1365-2958.2005.05020.x

    Article  CAS  PubMed  Google Scholar 

  14. Romero D, Aguilar C, Losick R, Kolter R (2010) Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci 107:2230–2234. https://doi.org/10.1073/pnas.0910560107

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi K, Iwano M (2012) BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol 85:51–66. https://doi.org/10.1111/j.1365-2958.2012.08094.x

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez-Pastor JE, Hobbs EC, Losick R (2003) Cannibalism by sporulating bacteria. Science 301:510–513. https://doi.org/10.1126/science.1086462

    Article  CAS  PubMed  Google Scholar 

  17. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586. https://doi.org/10.1016/j.mib.2004.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Kearns DB, Losick R (2005) Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19:3083–3094. https://doi.org/10.1101/gad.1373905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22:945–953. https://doi.org/10.1101/gad.1645008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, Eriksen C, Brix S, Drescher K, Stanley-Wall N, Kümmerli R, Kovács ÁT (2018) Division of labor during biofilm matrix production. Curr Biol 28:1903–1913. https://doi.org/10.1016/j.cub.2018.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33:152–163. https://doi.org/10.1111/j.1574-6976.2008.00148.x

    Article  CAS  PubMed  Google Scholar 

  22. López D, Vlamakis H, Losick R, Kolter R (2009) Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol 74:609–618. https://doi.org/10.1111/j.1365-2958.2009.06882.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ackermann M (2015) A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13:497–508. https://doi.org/10.1038/nrmicro3491

    Article  CAS  PubMed  Google Scholar 

  24. Davis KM, Isberg RR (2016) Defining heterogeneity within bacterial populations via single cell approaches. BioEssays 38:782–790. https://doi.org/10.1002/bies.201500121

    Article  PubMed  Google Scholar 

  25. Aguilar C, Vlamakis H, Guzman A, Losick R, Kolter R (2010) KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. MBio 1:e00035–e00010. https://doi.org/10.1128/mBio.00035-10

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209

    Article  CAS  PubMed  Google Scholar 

  27. Molle V, Fujita M, Jensen ST, Eichenberger P, González-Pastor JE, Liu JS, Losick R (2003) The Spo0A regulon of Bacillus subtilis. Mol Microbiol 50:1683–1701. https://doi.org/10.1046/j.1365-2958.2003.03818.x

    Article  CAS  PubMed  Google Scholar 

  28. Fujita M, Gonzalez-Pastor JE, Losick R (2005) High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol 187:1357–1368. https://doi.org/10.1128/JB.187.4.1357-1368.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang M, Shao W, Perego M, Hoch JA (2000) Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38:535–542. https://doi.org/10.1046/j.1365-2958.2000.02148.x

    Article  CAS  PubMed  Google Scholar 

  30. Ireton K, Rudner DZ, Siranosian KJ, Grossman AD (1993) Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7:283–294

    Article  CAS  PubMed  Google Scholar 

  31. McLoon AL, Kolodkin-Gal I, Rubinstein SM, Kolter R, Losick R (2011) Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J Bacteriol 193:679–685. https://doi.org/10.1128/JB.01186-10

    Article  CAS  PubMed  Google Scholar 

  32. López D, Fischbach M, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci 106:280–285. https://doi.org/10.1073/pnas.0810940106

    Article  PubMed  Google Scholar 

  33. Shemesh M, Kolter R, Losick R (2010) The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. J Bacteriol 192:6352–6356. https://doi.org/10.1128/JB.01025-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beauregard PB, Chai Y, Vlamakis H, Losick R, Kolter R (2013) Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci 110:E1621–E1630. https://doi.org/10.1073/pnas.1218984110

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Cao S, Chai Y, Clardy J, Kolter R, Guo JH, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol Microbiol 85:418–430. https://doi.org/10.1111/j.1365-2958.2012.08109.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corrigan RM, Gründling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11:513–524. https://doi.org/10.1038/nrmicro3069

    Article  CAS  PubMed  Google Scholar 

  37. Witte G, Hartung S, Büttner K, Hopfner KP (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell 30:167–178. https://doi.org/10.1016/j.molcel.2008.02.020

    Article  CAS  PubMed  Google Scholar 

  38. Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stülke J, Ficner R, Commichau FM (2015) Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. J Biol Chem 290:6596–6606. https://doi.org/10.1074/jbc.M114.630418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Römling U (2008) Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea. Sci Signal 1:pe39. https://doi.org/10.1126/scisignal.133pe39

    Article  PubMed  Google Scholar 

  40. Mehne FMP, Gunka K, Eilers H, Herzberg C, Kaever V, Stülke J (2013) Cyclic di-AMP homeostasis in Bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. J Biol Chem 288:2004–2017. https://doi.org/10.1074/jbc.M112.395491

    Article  CAS  PubMed  Google Scholar 

  41. Tan E, Rao F, Pasunooti S, Pham TH, Soehano I, Turner MS, Liew CW, Lescar J, Pervushin K, Liang ZX (2013) Solution structure of the PAS domain of a thermophilic YybT protein homolog reveals a potential ligand-binding site. J Biol Chem 288:11949–11959. https://doi.org/10.1074/jbc.M112.437764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rao F, See RY, Zhang D, Toh DC, Ji Q, Liang ZX (2010) YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem 285:473–482. https://doi.org/10.1074/jbc.M109.040238

    Article  CAS  PubMed  Google Scholar 

  43. Huynh TN, Luo S, Pensinger D, Sauer JD, Tong L, Woodward JJ (2015) An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci 112:E747–E756. https://doi.org/10.1073/pnas.1416485112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huynh TN, Woodward JJ (2016) Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr Opin Microbiol 30:22–29. https://doi.org/10.1016/j.mib.2015.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97:189–204. https://doi.org/10.1111/mmi.13026

    Article  CAS  PubMed  Google Scholar 

  46. Commichau FM, Gibhardt J, Halbedel S, Gundlach J, Stülke J (2018) A Delicate connection: c-di-AMP affects cell integrity by controlling osmolyte transport. Trends Microbiol 26:175–185. https://doi.org/10.1016/j.tim.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  47. Luo Y, Helmann JD (2012) Analysis of the role of Bacillus subtilis σM in β-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 83:623–639. https://doi.org/10.1111/j.1365-2958.2011.07953.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gundlach J, Mehne FMP, Herzberg C, Kampf J, Valerius O, Kaever V, Stülke J (2015) An essential poison: synthesis and degradation of cyclic di-AMP in Bacillus subtilis. J Bacteriol 197:3265–3274. https://doi.org/10.1128/JB.00564-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA (2018) Cyclic di-AMP acts as an extracellular signal that impacts Bacillus subtilis biofilm formation and plant attachment. MBio 9:e00341–e00318. https://doi.org/10.1128/mBio.00341-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Du B, Ji W, An H, Shi Y, Huang Q, Cheng Y, Fu Q, Wang H, Yan Y, Sun J (2014) Functional analysis of c-di-AMP phosphodiesterase, GdpP, in Streptococcus suis serotype 2. Microbiol Res 169:749–758. https://doi.org/10.1016/j.micres.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  51. Konno H, Yoshida Y, Nagano K, Takebe J, Hasegawa Y (2018) Biological and biochemical roles of two distinct cyclic dimeric adenosine 3′,5′-monophosphate- associated phosphodiesterases in Streptococcus mutans. Front Microbiol 9:2347. https://doi.org/10.3389/fmicb.2018.02347

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gundlach J, Rath H, Herzberg C, Mäder U, Stülke J (2016) Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front Microbiol 7:804. https://doi.org/10.3389/fmicb.2016.00804

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gundlach J, Commichau FM, Stülke J (2018) Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Curr Genet 64:191–195. https://doi.org/10.1007/s00294-017-0734-3

    Article  CAS  PubMed  Google Scholar 

  54. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527:59–63. https://doi.org/10.1038/nature15709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jones CP, Ferre-D’Amare AR (2014) Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 33:2692–2703. https://doi.org/10.15252/embj.201489209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meehan RE, Torgerson CD, Gaffney BL, Jones RA, Strobel SA (2016) Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors. Biochemistry 55:837–849. https://doi.org/10.1021/acs.biochem.5b00965

    Article  CAS  PubMed  Google Scholar 

  57. Kim H, Youn S-J, Kim SO, Ko J, Lee J-O, Choi B-S (2015) Structural studies of potassium transport protein KtrA regulator of conductance of K + (RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). J Biol Chem 290:16393–16402. https://doi.org/10.1074/jbc.M115.641340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiß M, Gibhardt J, Thürmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stülke J (2017) Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 10:eaal3011. https://doi.org/10.1126/scisignal.aal3011

    Article  CAS  PubMed  Google Scholar 

  59. Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol 185:1289–1298. https://doi.org/10.1128/JB.185.4.1289-1298.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9:834–839. https://doi.org/10.1038/nchembio.1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci 110:9084–9089. https://doi.org/10.1073/pnas.1300595110

    Article  PubMed  PubMed Central  Google Scholar 

  62. Watson PY, Fedor MJ (2012) The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. Nat Chem Biol 8:963–965. https://doi.org/10.1038/nchembio.1095

    Article  CAS  PubMed  Google Scholar 

  63. Ren A, Patel DJ (2014) c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry–related pockets. Nat Chem Biol 10:780–786. https://doi.org/10.1038/nchembio.1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gundlach J, Dickmanns A, Schröder-Tittmann K, Neumann P, Kaesler J, Kampf J, Herzberg C, Hammer E, Schwede F, Kaever V, Tittmann K, Stülke J, Ficner R (2015) Identification, characterization, and structure analysis of the cyclic di-AMP-binding PII-like signal transduction protein DarA. J Biol Chem 290:3069–3080. https://doi.org/10.1074/jbc.M114.619619

    Article  CAS  PubMed  Google Scholar 

  65. Block KF, Hammond MC, Breaker RR (2010) Evidence for widespread gene control function by the ydaO riboswitch candidate. J Bacteriol 192:3983–3989. https://doi.org/10.1128/JB.00450-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, Yavin E, Ben-Yehuda S (2011) c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep 12:594–601. https://doi.org/10.1038/embor.2011.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bejerano-Sagie M, Oppenheimer-Shaanan Y, Berlatzky I, Rouvinski A, Meyerovich M, Ben-Yehuda S (2006) A checkpoint protein that scans the chromosome for damage at the start of sporulation in Bacillus subtilis. Cell 125:679–690. https://doi.org/10.1016/j.cell.2006.03.039

    Article  CAS  PubMed  Google Scholar 

  68. Gándara C, de DKC L, Torres R, Serrano E, Altenburger S, Graumann PL, Alonso JC (2017) Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA Repair (Amst) 55:17–30. https://doi.org/10.1016/j.dnarep.2017.05.002

    Article  CAS  Google Scholar 

  69. Campos SS, Ibarra-Rodriguez JR, Barajas-Ornelas RC, Ramirez-Guadiana FH, Obregon-Herrera A, Setlow P, Pedraza-Reyes M (2014) Interaction of apurinic/apyrimidinic endonucleases Nfo and ExoA with the DNA integrity scanning protein DisA in the processing of oxidative DNA damage during Bacillus subtilis spore outgrowth. J Bacteriol 196:568–578. https://doi.org/10.1128/JB.01259-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raguse M, Torres R, Seco EM, Gándara C, Ayora S, Moeller R, Alonso JC (2017) Bacillus subtilis DisA helps to circumvent replicative stress during spore revival. DNA Repair (Amst) 59:57–68. https://doi.org/10.1016/J.DNAREP.2017.09.006

    Article  CAS  Google Scholar 

  71. Gándara C, Alonso JC (2015) DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA Repair (Amst) 27:1–8. https://doi.org/10.1016/j.dnarep.2014.12.007

    Article  CAS  Google Scholar 

  72. Zheng C, Ma Y, Wang X, Xie Y, Ali MK, He J (2015) Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Front Microbiol 6:908. https://doi.org/10.3389/fmicb.2015.00908

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mehne FMP, Schröder-Tittmann K, Eijlander RT, Herzberg C, Hewitt L, Kaever V, Lewis RJ, Kuipers OP, Tittmann K, Stülke J (2014) Control of the diadenylate cyclase CdaS in Bacillus subtilis. J Biol Chem 289:21098–21107. https://doi.org/10.1074/jbc.M114.562066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Luo Y, Helmann JD (2012) A σD-dependent antisense transcript modulates expression of the cyclic-di-AMP hydrolase GdpP in Bacillus subtilis. Microbiology 158:2732–2741. https://doi.org/10.1099/mic.0.062174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chai Y, Kolter R, Losick R (2010) Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol Microbiol 78:218–229. https://doi.org/10.1111/j.1365-2958.2010.07335.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. https://doi.org/10.1146/annurev.micro.61.080706.093316

    Article  CAS  PubMed  Google Scholar 

  77. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  PubMed  Google Scholar 

  78. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

    Article  CAS  PubMed  Google Scholar 

  79. Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo J (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 13:848–864. https://doi.org/10.1016/j.surg.2006.10.010.Use

    Article  Google Scholar 

  80. Arkhipova TN, Veselov SU, Melentiev AI, Martynenko EV, Kudoyarova GR (2005) Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 272:201–209. https://doi.org/10.1007/s11104-004-5047-x

    Article  CAS  Google Scholar 

  81. Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744. https://doi.org/10.1094/MPMI-21-6-0737

    Article  CAS  PubMed  Google Scholar 

  82. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti Cei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331. https://doi.org/10.1111/1462-2920.12439

    Article  PubMed  Google Scholar 

  83. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705. https://doi.org/10.1126/science.1189801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang J, Bai Y, Zhang Y, Gabrielle VD, Jin L, Bai G (2014) Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection. Mol Microbiol 93:65–79. https://doi.org/10.1111/mmi.12641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE, Valdivia RH (2013) STING-Dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. MBio 4:e00018–e00013. https://doi.org/10.1128/mBio.00018-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gries CM, Bruger EL, Moormeier DE, Scherr TD, Waters CM, Kielian T (2016) Cyclic di-AMP released from Staphylococcus aureus biofilm induces a macrophage type I interferon response. Infect Immun 84:3564–3574. https://doi.org/10.1128/IAI.00447-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nai C, Meyer V (2018) From axenic to mixed cultures: technological advances accelerating a paradigm shift in microbiology. Trends Microbiol 26:538–554. https://doi.org/10.1016/j.tim.2017.11.004

    Article  CAS  PubMed  Google Scholar 

  88. Shank EA, Klepac-Ceraj V, Collado-Torres L, Powers GE, Losick R, Kolter R (2011) Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc Natl Acad Sci 108:E1236–E1243. https://doi.org/10.1073/pnas.1103630108

    Article  PubMed  PubMed Central  Google Scholar 

  89. Teh WK, Dramsi S, Tolker-Nielsen T, Yang L, Givskov M (2019) Increased intracellular cyclic-di-AMP levels sensitize Streptococcus gallolyticus subsp. gallolyticus to osmotic stress, and reduce biofilm formation and adherence on intestinal cells. J Bacteriol 201:e00597–e00518. https://doi.org/10.1128/JB.00597-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen L, Li X, Zhou X, Zeng J, Ren Z, Lei L, Kang D, Zhang K, Zou J, Li Y (2018) Inhibition of Enterococcus faecalis growth and biofilm formation by molecule targeting cyclic di-AMP synthetase activity. J Endod 44:1381–1388. https://doi.org/10.1016/j.joen.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  91. Peng X, Zhang Y, Bai G, Zhou X, Wu H (2016) Cyclic di-AMP mediates biofilm formation. Mol Microbiol 99:945–959. https://doi.org/10.1111/mmi.13277

    Article  CAS  PubMed  Google Scholar 

  92. Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A (2011) c-di-AMP Is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7:e1002217. https://doi.org/10.1371/journal.ppat.1002217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Veličković D, Anderton CR (2017) Mass spectrometry imaging: towards mapping the elemental and molecular composition of the rhizosphere. Rhizosphere 3:254–258. https://doi.org/10.1016/j.rhisph.2017.03.003

    Article  Google Scholar 

  94. Garg N, Zeng Y, Edlund A, Melnik AV, Sanchez LM, Mohimani H, Gurevich A, Miao V, Schiffler S, Lim YW, Luzzatto-Knaan T, Cai S, Rohwer F, Pevzner PA, Cichewicz RH, Alexandrov T, Dorrestein PC (2016) Spatial molecular architecture of the microbial community of a Peltigera lichen. mSystems 1:e00139–e00116. https://doi.org/10.1128/mSystems.00139-16

    Article  PubMed  PubMed Central  Google Scholar 

  95. Valm AM, Mark Welch JL, Borisy GG (2012) CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst Appl Microbiol 35:496–502. https://doi.org/10.1016/j.syapm.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Valm AM, Oldenbourg R, Borisy GG (2016) Multiplexed spectral imaging of 120 different fluorescent labels. PLoS One 11:e0158495. https://doi.org/10.1371/journal.pone.0158495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Peredo EL, Simmons SL (2018) Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front Microbiol 8:2669. https://doi.org/10.3389/fmicb.2017.02669

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Shank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yannarell, S.M., Townsley, L., Shank, E.A. (2020). Cyclic di-AMP in Bacillus subtilis Biofilm Formation. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_17

Download citation

Publish with us

Policies and ethics