Skip to main content

Measuring Individual Cell Cyclic di-GMP: Identifying Population Diversity and Cyclic di-GMP Heterogeneity

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

Cyclic di-GMP is a second messenger used by bacteria to regulate motility, extracellular polysaccharide production, and the cell cycle. Recent advances in the measurement of real time cyclic di-GMP levels in single cells have uncovered significant dynamic heterogeneity of second messenger concentrations within bacterial populations. This heterogeneity results in a wide range of phenotypic outcomes within a single population, providing the potential for population survival and adaptability in response to rapidly changing environments. In this chapter, we discuss some of the measurement technologies available for single-cell measurement of cyclic di-GMP concentrations, the resulting discovery of heterogeneous cyclic di-GMP populations, the mechanisms bacteria use to generate this heterogeneity, and the biochemical and functional consequences of heterogeneity on cyclic di-GMP effector binding and the bacterial population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52. https://doi.org/10.1128/MMBR.00043-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ausmees N, Mayer R, Weinhouse H, Volman G, Amikam D, Benziman M, Lindberg M (2001) Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204(1):163–167

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187(14):4774–4781. https://doi.org/10.1128/JB.187.14.4774-4781.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Romling U, Simm R (2009) Prevailing concepts of c-di-GMP signaling. Contrib Microbiol 16:161–181. https://doi.org/10.1159/000219379

    Article  PubMed  Google Scholar 

  5. Galperin MY (2010) Diversity of structure and function of response regulator output domains. Curr Opin Microbiol 13(2):150–159. https://doi.org/10.1016/j.mib.2010.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chou SH, Galperin MY (2016) Diversity of cyclic Di-GMP-binding proteins and mechanisms. J Bacteriol 198(1):32–46. https://doi.org/10.1128/JB.00333-15

    Article  CAS  PubMed  Google Scholar 

  7. Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI (2012) The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol Microbiol 86(6):1424–1440. https://doi.org/10.1111/mmi.12066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spangler C, Bohm A, Jenal U, Seifert R, Kaever V (2010) A liquid chromatography-coupled tandem mass spectrometry method for quantitation of cyclic di-guanosine monophosphate. J Microbiol Methods 81(3):226–231. https://doi.org/10.1016/j.mimet.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  9. Tischler AD, Camilli A (2005) Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73(9):5873–5882. https://doi.org/10.1128/IAI.73.9.5873-5882.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M, Nielsen TE, Givskov M, Parsek MR, Tolker-Nielsen T (2012) Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 78(15):5060–5069. https://doi.org/10.1128/AEM.00414-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferreira RB, Antunes LC, Greenberg EP, McCarter LL (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol 190(3):851–860. https://doi.org/10.1128/JB.01462-07

    Article  CAS  PubMed  Google Scholar 

  12. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321(5887):411–413. https://doi.org/10.1126/science.1159519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schaper S, Steinchen W, Krol E, Altegoer F, Skotnicka D, Sogaard-Andersen L, Bange G, Becker A (2017) AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 114(24):E4822–E4831. https://doi.org/10.1073/pnas.1702435114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khan M, Harms JS, Marim FM, Armon L, Hall CL, Liu YP, Banai M, Oliveira SC, Splitter GA, Smith JA (2016) The bacterial second messenger cyclic di-GMP regulates Brucella pathogenesis and leads to altered host immune response. Infect Immun 84(12):3458–3470. https://doi.org/10.1128/IAI.00531-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song F, Wang H, Sauer K, Ren D (2018) Cyclic-di-GMP and oprF are involved in the response of Pseudomonas aeruginosa to substrate material stiffness during attachment on polydimethylsiloxane (PDMS). Front Microbiol 9:110. https://doi.org/10.3389/fmicb.2018.00110

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li X, Zhao X, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273(52):34970–34975

    Article  CAS  PubMed  Google Scholar 

  17. Kourtis N, Tavernarakis N (2017) Protein synthesis rate assessment by fluorescence recovery after photobleaching (FRAP). Bio Protoc 7(5):e2156. https://doi.org/10.21769/BioProtoc.2156

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135(13):4906–4909. https://doi.org/10.1021/ja311960g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335(6073):1194. https://doi.org/10.1126/science.1218298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han KY, Leslie BJ, Fei J, Zhang J, Ha T (2013) Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J Am Chem Soc 135(50):19033–19038. https://doi.org/10.1021/ja411060p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang XC, Wilson SC, Hammond MC (2016) Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Res 44(17):e139. https://doi.org/10.1093/nar/gkw580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC (2015) RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. J Am Chem Soc 137(20):6432–6435. https://doi.org/10.1021/jacs.5b00275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI (2010) Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328(5983):1295–1297. https://doi.org/10.1126/science.1188658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ho CL, Chong KS, Oppong JA, Chuah ML, Tan SM, Liang ZX (2013) Visualizing the perturbation of cellular cyclic di-GMP levels in bacterial cells. J Am Chem Soc 135(2):566–569. https://doi.org/10.1021/ja310497x

    Article  CAS  PubMed  Google Scholar 

  25. Bajar BT, Wang ES, Zhang S, Lin MZ, Chu J (2016) A guide to fluorescent protein FRET pairs. Sensors (Basel) 16(9):1488. https://doi.org/10.3390/s16091488

    Article  CAS  Google Scholar 

  26. Christen M, Kamischke C, Kulasekara HD, Olivas KC, Kulasekara BR, Christen B, Kline T, Miller SI (2018) Identification of small molecule modulators of diguanylate cyclase by FRET-based high-throughput-screening. ChemBioChem 20(3):394–407. https://doi.org/10.1002/cbic.201800593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeo J, Dippel AB, Wang XC, Hammond MC (2018) In vivo biochemistry: single-cell dynamics of cyclic Di-GMP in Escherichia coli in response to zinc overload. Biochemistry 57(1):108–116. https://doi.org/10.1021/acs.biochem.7b00696

    Article  CAS  PubMed  Google Scholar 

  28. Mills E, Petersen E, Kulasekara BR, Miller SI (2015) A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic L-arginine-sensing pathway. Sci Signal 8(380):ra57. https://doi.org/10.1126/scisignal.aaa1796

    Article  CAS  PubMed  Google Scholar 

  29. Peterson R, Mills E, Miller SI (2019) Cyclic-di-GMP regulation promotes survival of a slow replicating subpopulation of intracellular Salmonella Typhimurium. Proc Natl Acad Sci USA 116:6335–6440

    Article  CAS  Google Scholar 

  30. Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18(6):715–727. https://doi.org/10.1101/gad.289504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shapiro L (1985) Generation of polarity during Caulobacter cell differentiation. Annu Rev Cell Biol 1:173–207. https://doi.org/10.1146/annurev.cb.01.110185.001133

    Article  CAS  PubMed  Google Scholar 

  32. Hallez R, Delaby M, Sanselicio S, Viollier PH (2017) Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 15(3):137–148. https://doi.org/10.1038/nrmicro.2016.183

    Article  CAS  PubMed  Google Scholar 

  33. Levi A, Jenal U (2006) Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J Bacteriol 188(14):5315–5318. https://doi.org/10.1128/JB.01725-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hecht GB, Lane T, Ohta N, Sommer JM, Newton A (1995) An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J 14(16):3915–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paul R, Jaeger T, Abel S, Wiederkehr I, Folcher M, Biondi EG, Laub MT, Jenal U (2008) Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133(3):452–461. https://doi.org/10.1016/j.cell.2008.02.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aldridge P, Paul R, Goymer P, Rainey P, Jenal U (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47(6):1695–1708

    Article  CAS  PubMed  Google Scholar 

  37. Abel S, Chien P, Wassmann P, Schirmer T, Kaever V, Laub MT, Baker TA, Jenal U (2011) Regulatory cohesion of cell cycle and cell differentiation through interlinked phosphorylation and second messenger networks. Mol Cell 43(4):550–560. https://doi.org/10.1016/j.molcel.2011.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ozaki S, Schalch-Moser A, Zumthor L, Manfredi P, Ebbensgaard A, Schirmer T, Jenal U (2014) Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control. Mol Microbiol 94(3):580–594. https://doi.org/10.1111/mmi.12777

    Article  CAS  PubMed  Google Scholar 

  39. Huitema E, Pritchard S, Matteson D, Radhakrishnan SK, Viollier PH (2006) Bacterial birth scar proteins mark future flagellum assembly site. Cell 124(5):1025–1037. https://doi.org/10.1016/j.cell.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  40. Christen M, Christen B, Allan MG, Folcher M, Jeno P, Grzesiek S, Jenal U (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci U S A 104(10):4112–4117. https://doi.org/10.1073/pnas.0607738104

    Article  CAS  Google Scholar 

  41. Pini F, De Nisco NJ, Ferri L, Penterman J, Fioravanti A, Brilli M, Mengoni A, Bazzicalupo M, Viollier PH, Walker GC, Biondi EG (2015) Cell cycle control by the master regulator CtrA in Sinorhizobium meliloti. PLoS Genet 11 (5):e1005232. https://doi.org/10.1371/journal.pgen.1005232

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hallez R, Mignolet J, Van Mullem V, Wery M, Vandenhaute J, Letesson JJ, Jacobs-Wagner C, De Bolle X (2007) The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO J 26 (5):1444–1455. https://doi.org/10.1038/sj.emboj.7601577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petersen E, Chaudhuri P, Gourley C, Harms J, Splitter G (2011) Brucella melitensis cyclic di-GMP phosphodiesterase BpdA controls expression of flagellar genes. J Bacteriol 193(20):5683–5691. https://doi.org/10.1128/JB.00428-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lai TH, Kumagai Y, Hyodo M, Hayakawa Y, Rikihisa Y (2009) The anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J Bacteriol 191(3):693–700. https://doi.org/10.1128/JB.01218-08

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki T, Iino T (1980) Isolation and characterization of multiflagellate mutants of Pseudomonas aeruginosa. J Bacteriol 143(3):1471–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA, Miller SI (2013) c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. eLife 2:e01402. https://doi.org/10.7554/eLife.01402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guvener ZT, Tifrea DF, Harwood CS (2006) Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. Mol Microbiol 61(1):106–118. https://doi.org/10.1111/j.1365-2958.2006.05218.x

    Article  CAS  PubMed  Google Scholar 

  48. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36(4):893–916. https://doi.org/10.1111/j.1574-6976.2011.00322.x

    Article  CAS  PubMed  Google Scholar 

  49. Partridge JD, Harshey RM (2013) More than motility: Salmonella flagella contribute to overriding friction and facilitating colony hydration during swarming. J Bacteriol 195(5):919–929. https://doi.org/10.1128/JB.02064-12

    Article  PubMed  Google Scholar 

  50. Mayola A, Irazoki O, Martinez IA, Petrov D, Menolascina F, Stocker R, Reyes-Darias JA, Krell T, Barbe J, Campoy S (2014) RecA protein plays a role in the chemotactic response and chemoreceptor clustering of Salmonella enterica. PLoS One 9(8):e105578. https://doi.org/10.1371/journal.pone.0105578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maddock JR, Shapiro L (1993) Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259(5102):1717–1723

    Article  CAS  PubMed  Google Scholar 

  52. Skotnicka D, Petters T, Heering J, Hoppert M, Kaever V, Sogaard-Andersen L (2016) Cyclic Di-GMP regulates type IV pilus-dependent motility in Myxococcus xanthus. J Bacteriol 198(1):77–90. https://doi.org/10.1128/JB.00281-15

    Article  CAS  PubMed  Google Scholar 

  53. Bulyha I, Schmidt C, Lenz P, Jakovljevic V, Hone A, Maier B, Hoppert M, Sogaard-Andersen L (2009) Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins. Mol Microbiol 74(3):691–706. https://doi.org/10.1111/j.1365-2958.2009.06891.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Le Quere B, Ghigo JM (2009) BcsQ is an essential component of the Escherichia coli cellulose biosynthesis apparatus that localizes at the bacterial cell pole. Mol Microbiol 72(3):724–740. https://doi.org/10.1111/j.1365-2958.2009.06678.x

    Article  CAS  PubMed  Google Scholar 

  55. Serra DO, Richter AM, Hengge R (2013) Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195(24):5540–5554. https://doi.org/10.1128/JB.00946-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuwada NJ, Traxler B, Wiggins PA (2015) Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle. Mol Microbiol 95(1):64–79. https://doi.org/10.1111/mmi.12841

    Article  CAS  PubMed  Google Scholar 

  57. Casadesus J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70(3):830–856. https://doi.org/10.1128/MMBR.00016-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Million-Weaver S, Camps M (2014) Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 75:27–36. https://doi.org/10.1016/j.plasmid.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  59. Helaine S, Thompson JA, Watson KG, Liu M, Boyle C, Holden DW (2010) Dynamics of intracellular bacterial replication at the single cell level. Proc Natl Acad Sci U S A 107(8):3746–3751. https://doi.org/10.1073/pnas.1000041107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel I. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, S.I., Petersen, E. (2020). Measuring Individual Cell Cyclic di-GMP: Identifying Population Diversity and Cyclic di-GMP Heterogeneity. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_12

Download citation

Publish with us

Policies and ethics