Skip to main content

Metabolic Regulation by Cyclic di-AMP Signaling

  • Chapter
  • First Online:
Microbial Cyclic Di-Nucleotide Signaling

Abstract

The year 2018 marks the 10-year anniversary of the discovery of the diadenylate cyclase enzyme and its capacity to synthesize the broadly conserved second messenger cyclic di-AMP. Since this discovery, our understanding of the physiological processes controlled by this dinucleotide has advanced rapidly, with the discovery of both cyclic di-AMP responsive riboswitch gene control elements and protein binding partners. Additionally, cyclic di-AMP has been implicated as a cross-kingdom signal between bacteria and eukaryotic hosts. While the physiological processes modulated by these signaling partners are as diverse as the bacteria that produce cyclic di-AMP, a key theme that has emerged is the regulation of cellular metabolism. In this chapter, we will focus on the biological impacts of metabolic regulation imposed by cyclic di-AMP at both the transcriptional/translational and posttranslational levels, as well as the molecular mechanism of this regulation. We will highlight the regulation of central carbon metabolism through pyruvate carboxylase, the regulation of cell wall metabolism through the ydaO riboswitch, and the impact on host cell inflammatory response through competitive inhibition of the host binding protein RECON.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witte G, Hartung S, Buttner K, Hopfner K-P (2008) Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombinantion intermediates. Mol Cell 30:167–178

    Article  CAS  PubMed  Google Scholar 

  2. Romling U (2008) Great times for small molecules: c-di-AMP, a second messenger candidate in bacteria and archaea. Sci Signal 1:pe39

    Article  PubMed  Google Scholar 

  3. Corrigan RM, Grundling A (2013) Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 11:513–524

    Article  CAS  PubMed  Google Scholar 

  4. Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stulke J (2015) A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol 97:189–204

    Article  CAS  PubMed  Google Scholar 

  5. Pham TH, Liang ZX, Marcellin E, Turner MS (2016) Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Curr Genet 62:731–738

    Article  CAS  PubMed  Google Scholar 

  6. Krasteva PV, Sondermann H (2017) Versatile modes of cellular regulation via cyclic dinucleotides. Nat Chem Biol 13:350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huynh TN, Woodward JJ (2016) Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Curr Opin Microbiol 30:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103:425–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whiteley AT, Pollock AJ, Portnoy DA (2015) The PAMP c-di-AMP is essential for Listeria growth in macrophages and rich but not minimal media due to a toxic increase in (p)ppGpp. Cell Host Microbe 17:788–798

    Google Scholar 

  11. Fahmi T, Port GC, Cho KH (2017) c-di-AMP: an essential molecule in the signaling pathways that regulate the viability and virulence of Gram-positive bacteria. Genes 8:E197

    Article  PubMed  CAS  Google Scholar 

  12. Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiss M, Gibhardt J, Thurmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stulke J (2017) Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Sci Signal 10:eaal3011

    Article  PubMed  CAS  Google Scholar 

  13. Blotz C, Treffon K, Kaever V, Schwede F, Hammer E, Stulke J (2017) Identification of the components involved in cyclic di-AMP signaling in Mycoplasma pneumoniae. Front Microbiol 8:1328

    Google Scholar 

  14. McFarland AP, Luo S, Ahmed-Qadri F, Zuck M, Thayer EF, Goo YA, Hybiske K, Tong L, Woodward JJ (2017) Sensing of bacterial cyclic dinucleotides by the oxidoreductase RECON promotes NF-kB activation and shapes a proinflammatory antibacterial state. Immunity 46:433–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devaux L, Kaminski PA, Trieu-Cuot P, Firon A (2018) Cyclic di-AMP in host-pathogen interactions. Curr Opin Microbiol 41:21–28

    Article  CAS  PubMed  Google Scholar 

  16. Xia P, Wang S, Xiong Z, Zhu X, Ye B, Du Y, Meng S, Qu Y, Liu J, Gao G, Tian Y, Fan Z (2018) The ER membrane adaptor ERAdP senses the bacterial second messenger c-di-AMP and initiates anti-bacterial immunity. Nat Immunol 19:141–150

    Article  CAS  PubMed  Google Scholar 

  17. Barker JR, Koestler BJ, Carpenter VK, Burdette DL, Waters CM, Vance RE, Valdivia RH (2013) STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. mBio 4:e00018–00013

    Google Scholar 

  18. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR (2015) A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21:401–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gries CM, Bruger EL, Moormeier DE, Scherr TD, Waters CM, Kielian T (2016) Cyclic di-AMP released from Staphylococcus aureus biofilm induces a macrophage type I interferon response. Infect Immun 84:3564–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andrade WA, Firon A, Schmidt T, Hornung V, Fitzgerald KA, Kurt-Jones EA, Trieu-Cuot P, Golenbock DT, Kaminski PA (2016) Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 20:49–59

    Article  CAS  Google Scholar 

  21. Dey RJ, Dey B, Zheng Y, Cheung LS, Zhou J, Sayre D, Kumar P, Guo H, Lamichhane G, Sintim HO, Bishai WR (2017) Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nat Chem Biol 13:210–217

    Article  CAS  PubMed  Google Scholar 

  22. Jitrapakdee S, St. Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV (2008) Structure, mechanism and regulation of pyruvate carboxylase. Biochem J 413:369–387

    Article  CAS  PubMed  Google Scholar 

  23. Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70:863–891

    Article  CAS  PubMed  Google Scholar 

  24. Sellers K, Fox MP, Bousamra M 2nd, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R, Lane AN, Fan TW (2015) Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J Clin Investig 125:687–698

    Article  PubMed  PubMed Central  Google Scholar 

  25. Phannasil P, Thuwajit C, Warnnissorn M, Wallace JC, MacDonald MJ, Jitrapakdee S (2015) Pyruvate carboxylase is up-regulated in breast cancer and essential to support growth and invasion of MDA-MB-231 cells. PLoS One 10:e0129848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer J-D, Tong L, Woodward JJ (2014) The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell 158:1389–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L (2017) Structural and functional studies of pyruvate carboxylase regulation by cyclic-di-AMP in lactic acid bacteria. Proc Natl Acad Sci U S A 114:E7226–E7235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tong L (2017) Striking diversity in holoenzyme architecture and extensive conformational variability in biotin-dependent carboxylases. Adv Protein Chem Struct Biol 109:161–194

    Article  CAS  PubMed  Google Scholar 

  29. Schar J, Stoll R, Schauer K, Loeffler DIM, Eylert E, Joseph B, Eisenreich W, Fuchs TM, Goebel W (2010) Pyruvate carboxylase plays a crucial role in carbon metabolism of extra- and intracellularly replicating Listeria monocytogenes. J Bacteriol 192:1774–1784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Whiteley AT, Garelis NE, Peterson BN, Choi PH, Tong L, Woodward JJ, Portnoy DA (2017) c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation. Mol Microbiol 104(2):212–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Couture JF, Legrand P, Cantin L, Luu-The V, Labrie F, Breton R (2003) Human 20a-hydroxysteroid dehydrogenase: crystallographic and site-directed mutagenesis studies lead to the identification of an alternative binding site for C21-steroids. J Mol Biol 331:593–604

    Article  CAS  PubMed  Google Scholar 

  32. McFarland AP, Burke TP, Carletti AA, Glover RC, Tabakh H, Welch MD, Woodward JJ (2018) RECON-dependent inflammation in hepatocytes enhances Listeria monocytogenes cell-to-cell spread. mBio 9:e00526–00518

    Article  Google Scholar 

  33. Rizner TL (2012) Enzymes of the AKR1B and AKR1C subfamilies and uterine diseases. Front Pharmacol 3:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 101:6421–6426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Block KF, Hammond MC, Breaker RR (2010) Evidence for widespread gene control function by the ydaO riboswitch candidate. J Bacteriol 192:3983–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Watson PY, Fedor MJ (2012) The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. Nat Chem Biol 8:963–965

    Article  CAS  PubMed  Google Scholar 

  37. Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9:834–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren A, Patel DJ (2014) c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10:780–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao A, Serganov A (2014) Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10:787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones CP, Ferre-D’Amare AR (2014) Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 33:2692–2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. St-Onge RJ, Haiser HJ, Yousef MR, Sherwood E, Tschowri N, Al-Bassam M, Elliot MA (2015) Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces. Mol Microbiol 96:779–795

    Article  CAS  PubMed  Google Scholar 

  42. Schwenk S, Moores A, Nobeli I, McHugh TD, Arnvig KB (2018) Cell-wall synthesis and ribosome maturation are co-regulated by an RNA switch in Mycobacterium tuberculosis. Nucleic Acids Res 46:5837–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gundlach J, Commichau FM, Stulke J (2018) Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Curr Genet 64:191–195

    Article  CAS  PubMed  Google Scholar 

  44. Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 307:447–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The research on cyclic di-AMP signaling in the authors’ laboratories is supported by NIH grant R01AI116669.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Tong or Joshua J. Woodward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tong, L., Woodward, J.J. (2020). Metabolic Regulation by Cyclic di-AMP Signaling. In: Chou, SH., Guiliani, N., Lee, V., Römling, U. (eds) Microbial Cyclic Di-Nucleotide Signaling. Springer, Cham. https://doi.org/10.1007/978-3-030-33308-9_10

Download citation

Publish with us

Policies and ethics