Skip to main content

The Role of Muscle Protein and Energy Metabolism in Statin-Associated Muscle Symptoms

  • Chapter
  • First Online:
Statin-Associated Muscle Symptoms

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 484 Accesses

Abstract

Animal models of overt statin myopathy reveal clear negative effects on muscle protein and carbohydrate metabolism, which appear to be linked to changes in Akt/FOXO signalling. Forcibly increasing muscle carbohydrate flux under these conditions by pharmacological means blocks statin myopathy. Human volunteer research has delivered less definitive mechanistic insight of the aetiology of statin-related metabolic dysregulation, with little evidence of profound changes in muscle protein and carbohydrate metabolism to date in statin myalgia. However, this may be at least partly explained by statin myalgic patients stopping or changing statin medication before overt muscle pathology has developed to anything like that resembling overt muscle myopathy. Several lines of evidence have associated statin therapy with increased risk of new-onset diabetes and dysregulation of glucose control, but the mechanisms underpinning these observations are currently unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen CL, Wulff Helge J, Krasnik A, Kriegbaum M, Rasmussen LJ, Hickson ID, et al. LIFESTAT – living with statins: an interdisciplinary project on the use of statins as a cholesterol-lowering treatment and for cardiovascular risk reduction. Scand J Public Health. 2016;44(5):534–9.

    Article  PubMed  Google Scholar 

  2. Wong ND, Chuang J, Zhao Y, Rosenblit PD. Residual dyslipidemia according to low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B among statin-treated US adults: National Health and Nutrition Examination Survey 2009–2010. J Clin Lipidol. 2015;9(4):525–32.

    Article  PubMed  Google Scholar 

  3. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289(13):1681–90.

    CAS  PubMed  Google Scholar 

  4. Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, Keadle J, et al. Effect of statins on skeletal muscle function. Circulation. 2012;127(1):96–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mallinson JE, Marimuthu K, Murton A, Selby A, Smith K, Constantin-Teodosiu D, et al. Statin myalgia is not associated with reduced muscle strength, mass or protein turnover in older male volunteers, but is allied with a slowing of time to peak power output, insulin resistance and differential muscle mRNA expression. J Physiol. 2015;593(5):1239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scott D, Blizzard L, Fell J, Jones G. Statin therapy, muscle function and falls risk in community-dwelling older adults. QJM. 2009;102(9):625–33.

    Article  CAS  PubMed  Google Scholar 

  7. Bruckert E, Hayem G, Dejager S, Yau C, Begaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients – the PRIMO study. Cardiovasc Drugs Ther. 2005;19:403–14.

    Article  CAS  PubMed  Google Scholar 

  8. Draeger A, Monastryrskaya K, Mohaupt M, Hoppeler H, Savolainen H, Allemann C, et al. Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J Pathol. 2006;210:94–102.

    Article  CAS  PubMed  Google Scholar 

  9. Sinzinger H, O’Grady J. Professional athletes suffering from familial hypercholesterolaemia rarely tolerate statin treatment because of muscular problems. Br J Clin Pharmacol. 2004;57(4):525–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nichols GA, Koro CE. Does statin therapy initiation increase the risk for myopathy? An observational study of 32,225 diabetic and nondiabetic patients. Clin Ther. 2007;29(8):1761–70.

    Article  CAS  PubMed  Google Scholar 

  11. Dirks AJ, Jones KM. Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol. 2006;291(6):C1208–12.

    Article  CAS  PubMed  Google Scholar 

  12. Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, et al. HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385(9965):351–61.

    Google Scholar 

  13. Carter AA, Gomes T, Camacho X, Juurlink DN, Shah BR, Mamdani MM. Risk of incident diabetes among patients treated with statins: population based study. BMJ. 2013;346:f2610.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Danaei G, Garcia Rodriguez LA, Fernandez Cantero O, Hernan MA. Statins and risk of diabetes: an analysis of electronic medical records to evaluate possible bias due to differential survival. Diabetes Care. 2013;36(5):1236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reiner Z. Statins in the primary prevention of cardiovascular disease. Nat Rev Cardiol. 2013;10(8):453–64.

    Article  CAS  PubMed  Google Scholar 

  16. Glass DJ. Molecular mechanisms modulating muscle mass. Trends Mol Med. 2003;9(8):344–50.

    Article  CAS  PubMed  Google Scholar 

  17. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 2004;18(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  18. Constantin D, McCullough J, Mahajan RP, Greenhaff PL. Novel events in the molecular regulation of muscle mass in critically ill patients. J Physiol. 2011;589(Pt 15):3883–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Urso ML, Clarkson P, Hittel D, Hoffman EP, Thompson PD. Changes in ubiquitin proteasome pathway gene expression in skeletal muscle with exercise and statins. Arterioscler Thromb Vasc Biol. 2005;25(12):2560–6.

    Article  CAS  PubMed  Google Scholar 

  20. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscles. Cell Metab. 2007;6:472–83.

    Article  CAS  PubMed  Google Scholar 

  22. Mallinson J, Constantin-Teodosiu D, Sidaway J, Westwood FR, Greenhaff P. Blunted Akt/FOXO signalling and activation of genes controlling atrophy and fuel use in statin myopathy. J Physiol. 2009;587(1):219–30.

    Article  CAS  PubMed  Google Scholar 

  23. Laaksonen R, Katajamaa M, Paiva H, Sysi-Aho M, Saarinen L, Junni P, et al. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle. PLoS One. 2006;1:e97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Westwood F, Bigley A, Randall K, Marsden A, Scott R. Statin-induced muscle necrosis in the rat: distribution, development and fibre selectivity. Toxicol Pathol. 2005;33:246–57.

    Article  CAS  PubMed  Google Scholar 

  25. Morville T, Dohlmann T, Kuhlman AB, Monberg T, Torp M, Hartmann B, et al. Glucose homeostasis in statin users-the LIFESTAT study. Diabetes Metab Res Rev. 2019;35(3):e3110.

    Article  PubMed  CAS  Google Scholar 

  26. Mallinson JE, Constantin-Teodosiu D, Glaves PD, Martin EA, Davies WJ, Westwood FR, et al. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents. J Physiol 2012;590(Pt 24):6389–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reardon KA, Davis J, Kapsa RM, Choong P, Byrne E. Myostatin, insulin-like growth factor-1, and leukemia inhibitory factor mRNAs are upregulated in chronic human disuse muscle atrophy. Muscle Nerve. 2001;24(7):893–9.

    Article  CAS  PubMed  Google Scholar 

  28. Koh KK, Quon MJ, Han SH, Lee Y, Ahn JY, Kim SJ, et al. Simvastatin improves flow-mediated dilation but reduces adiponectin levels and insulin sensitivity in hypercholesterolemic patients. Diabetes Care. 2008;31(4):776–82.

    Article  CAS  PubMed  Google Scholar 

  29. Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Bang LE, Bundgaard H, et al. Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol. 2013;61(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  30. Preiss D, Seshasai SRK, Welsh P, Murphy SA, Ho JE, Waters DD, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy. JAMA. 2011;305(24):2556–64.

    Article  CAS  PubMed  Google Scholar 

  31. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375(9716):735–42.

    Article  CAS  PubMed  Google Scholar 

  32. Constantin D, Constantin-Teodosiu D, Layfield R, Tsintzas K, Bennett AJ, Greenhaff PL. PPAR delta agonism induces a change in muscle fuel metabolism and activation of an atrophy programme, but does not impair mitochondrial function. J Physiol. 2007;583:381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crossland H, Constantin-Teodosiu D, Gardiner SM, Constantin D, Greenhaff PL. A potential role for Akt/FOXO signalling in both protein loss and the impairment of muscle carbohydrate oxidation during sepsis in rodent skeletal muscle. J Physiol. 2008;586:5589–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang C, McFarlane C, Lokireddy S, Bonala S, Ge X, Masuda S, et al. Myostatin-deficient mice exhibit reduced insulin resistance through activating the AMP-activated protein kinase signalling pathway. Diabetologia. 2011;54(6):1491–501.

    Article  CAS  PubMed  Google Scholar 

  35. Bonala S, Lokireddy S, McFarlane C, Patnam S, Sharma M, Kambadur R. Myostatin induces insulin resistance via casitas B-lineage lymphoma b (Cblb)-mediated degradation of insulin receptor substrate 1 (IRS1) protein in response to high calorie diet intake. J Biol Chem. 2014;289(11):7654–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Greenhaff PL, Campbell-O’Sullivan SP, Constantin-Teodosiu D, Poucher SM, Roberts PA, Timmons JA. Metabolic inertia in contracting skeletal muscle: a novel approach for pharmacological intervention in peripheral vascular disease. Br J Clin Pharmacol. 2004;57(3):237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Constantin-Teodosiu D, Constantin D, Stephens F, Laithwaite D, Greenhaff PL. The role of FOXO and PPAR transcription factors in diet-mediated inhibition of PDC activation and carbohydrate oxidation during exercise in humans and the role of pharmacological activation of PDC in overriding these changes. Diabetes. 2012;61(5):1017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. https://www.outsideonline.com/1919086/when-statins-fail-and-where-diet-succeeds. 2013.

  39. Paiva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, et al. High-dose statins and skeletal muscle metabolism in humans: a randomized controlled trial. Clin Pharmacol Ther. 2005;78:60–8.

    Article  PubMed  CAS  Google Scholar 

  40. Walravens PA, Greene C, Frerman FE. Lovastatin, isoprenes, and myopathy. Lancet. 1989;2(8671):1097–8.

    Article  CAS  PubMed  Google Scholar 

  41. Folkers K, Langsjoen P, Willis R, Richardson P, Xia LJ, Ye CQ, et al. Lovastatin decreases coenzyme Q levels in humans. Proc Natl Acad Sci U S A. 1990;87(22):8931–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A. 1989;86(7):2379–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chariot P, Abadia R, Agnus D, Danan C, Charpentier C, Gherardi RK. Simvastatin-induced rhabdomyolysis followed by a MELAS syndrome. Am J Med. 1993;94(1):109–10.

    Article  CAS  PubMed  Google Scholar 

  44. Taylor BA, Lorson L, White CM, Thompson PD. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy. Atherosclerosis. 2015;238(2):329–35.

    Article  CAS  PubMed  Google Scholar 

  45. Flatters SJ. The contribution of mitochondria to sensory processing and pain. Prog Mol Biol Transl Sci. 2015;131:119–46.

    Article  PubMed  Google Scholar 

  46. Mikus CR, Boyle LJ, Borengasser SJ, Oberlin DJ, Naples SP, Fletcher J, et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013;62(8):709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, et al. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J. 2012;33(11):1397–407.

    Article  CAS  PubMed  Google Scholar 

  48. Asping M, Stride N, Sogaard D, Dohlmann TL, Helge JW, Dela F, et al. The effects of 2 weeks of statin treatment on mitochondrial respiratory capacity in middle-aged males: the LIFESTAT study. Eur J Clin Pharmacol. 2017;73(6):679–87.

    Article  CAS  PubMed  Google Scholar 

  49. Dohlmann TL, Morville T, Kuhlman AB, Chrois KM, Helge JW, Dela F, et al. Statin treatment decreases mitochondrial respiration but muscle coenzyme Q10 levels are unaltered: the LIFESTAT study. J Clin Endocrinol Metab. 2018;

    Google Scholar 

  50. Galtier F, Mura T, Raynaud de Mauverger E, Chevassus H, Farret A, Gagnol JP, et al. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers. Toxicol Appl Pharmacol. 2012;263(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  51. Busanello ENB, Marques AC, Lander N, de Oliveira DN, Catharino RR, Oliveira HCF, et al. Pravastatin chronic treatment sensitizes hypercholesterolemic mice muscle to mitochondrial permeability transition: protection by Creatine or Coenzyme Q10. Front Pharmacol. 2017;8:185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Singh F, Charles AL, Schlagowski AI, Bouitbir J, Bonifacio A, Piquard F, et al. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim Biophys Acta. 2015;1853(7):1574–85.

    Article  CAS  PubMed  Google Scholar 

  53. Mullen PJ, Zahno A, Lindinger P, Maseneni S, Felser A, Krahenbuhl S, et al. Susceptibility to simvastatin-induced toxicity is partly determined by mitochondrial respiration and phosphorylation state of Akt. Biochim Biophys Acta. 2011;1813(12):2079–87.

    Article  CAS  PubMed  Google Scholar 

  54. de Rezende LF, Rey-Lopez JP, Matsudo VK, do Carmo Luiz O. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 2014;14:333.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Tudor-Locke C, Craig CL, Thyfault JP, Spence JC. A step-defined sedentary lifestyle index: <5000 steps/day. Appl Physiol Nutr Metab. 2013;38(2):100–14.

    Article  PubMed  Google Scholar 

  56. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet. 2013;381(9864):394–9.

    Article  CAS  PubMed  Google Scholar 

  57. Parker BA, Augeri AL, Capizzi JA, Ballard KD, Troyanos C, Baggish AL, et al. Effect of statins on creatine kinase levels before and after a marathon run. Am J Cardiol. 2012;109(2):282–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of many colleagues to scientific ideas and reflections contained in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul L. Greenhaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greenhaff, P.L., Mallinson, J., Dela, F. (2020). The Role of Muscle Protein and Energy Metabolism in Statin-Associated Muscle Symptoms. In: Thompson, P., Taylor, B. (eds) Statin-Associated Muscle Symptoms. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-33304-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33304-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33303-4

  • Online ISBN: 978-3-030-33304-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics