Skip to main content

The Role of the Mitochondria in SAMS

  • Chapter
  • First Online:
Statin-Associated Muscle Symptoms

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

In this chapter we summarize the evidence for a central role of mitochondrial dysfunction in statin-associated muscle symptoms. Statin-related mitochondrial dysfunction can manifest itself in skeletal muscle by inducing a plethora of architectural and biochemical adaptations. Structural changes seen in biopsy specimens, including red ragged fibers, cytochrome oxidase-negative myofibers, and lipid-loaded vacuoles, are signs of mitochondrial respiratory chain dysfunction. Disturbances in mitochondrial energy metabolism are shown through increased lactate/pyruvate ratios, disruption of beta-oxidation, a decrease in mitochondrial DNA, and disturbances in electron transport chain complex activities. Apoptosis of myofibers may occur as a result of mitochondrial-mediated apoptosis and the formation of reactive oxygen species. Furthermore the role of coenzyme Q10 deficiency and disturbances in calcium homeostasis in relation to statin-induced mitochondrial dysfunction will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamperti C, Naini AB, Lucchini V, Prelle A, Bresolin N, Moggio M, et al. Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol. 2005;62(11):1709–12.

    Article  Google Scholar 

  2. Reichmann H, Vogler L, Seibel P. Ragged red or ragged blue fibers. Eur Neurol. 1996;36(2):98–102.

    Article  CAS  Google Scholar 

  3. Cohen BH. MERRF. Mitochondrial case studies. 2016;31–36.

    Chapter  Google Scholar 

  4. Gambelli S, Dotti MT, Malandrini A, Mondelli M, Stromillo ML, Gaudiano C, et al. Mitochondrial alterations in muscle biopsies of patients on statin therapy. J Submicrosc Cytol Pathol. 2004;36(1):85–9.

    CAS  PubMed  Google Scholar 

  5. Phillips PS, Haas RH, Bannykh S, Hathaway S, Gray NL, Kimura BJ, et al. Statin-associated myopathy with normal creatine kinase levels. Ann Intern Med. 2002;137(7):581–5.

    Article  Google Scholar 

  6. Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology. 2002;59(9):1406–11.

    Article  CAS  Google Scholar 

  7. Munnich A, Rotig A, Chretien D, Saudubray JM, Cormier V, Rustin P. Clinical presentations and laboratory investigations in respiratory chain deficiency. Eur J Pediatr. 1996;155(4):262–74.

    Article  CAS  Google Scholar 

  8. De Pinieux G, Chariot P, Ammi-Said M, Louarn F, Lejonc JL, Astier A, et al. Lipid-lowering drugs and mitochondrial function: effects of HMG-CoA reductase inhibitors on serum ubiquinone and blood lactate/pyruvate ratio. Br J Clin Pharmacol. 1996;42(3):333–7.

    Article  CAS  Google Scholar 

  9. Ahmadi Y, Ghorbanihaghjo A, Naghi-Zadeh M, Yagin NL. Oxidative stress as a possible mechanism of statin-induced myopathy. Inflammopharmacology. 2018;26(3):667–74.

    Article  CAS  Google Scholar 

  10. Phillips PS, Phillips CT, Sullivan MJ, Naviaux RK, Haas RH. Statin myotoxicity is associated with changes in the cardiopulmonary function. Atherosclerosis. 2004;177(1):183–8.

    Article  CAS  Google Scholar 

  11. Stringer HA, Sohi GK, Maguire JA, Cote HC. Decreased skeletal muscle mitochondrial DNA in patients with statin-induced myopathy. J Neurol Sci. 2013;325(1–2):142–7.

    Article  CAS  Google Scholar 

  12. Schick BA, Laaksonen R, Frohlich JJ, Paiva H, Lehtimaki T, Humphries KH, et al. Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin Pharmacol Ther. 2007;81(5):650–3.

    Article  CAS  Google Scholar 

  13. Paiva H, Thelen KM, Van Coster R, Smet J, De Paepe B, Mattila KM, et al. High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin Pharmacol Ther. 2005;78(1):60–8.

    Article  Google Scholar 

  14. Schirris TJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BG, et al. Statin-induced myopathy is associated with mitochondrial complex III inhibition. Cell Metab. 2015;22(3):399–407.

    Article  CAS  Google Scholar 

  15. Allard NAE, Schirris TJJ, Verheggen RJ, Russel FGM, Rodenburg RJ, Smeitink JAM, et al. Statins affect skeletal muscle performance: evidence for disturbances in energy metabolism. J Clin Endocrinol Metab. 2018;103(1):75–84.

    Article  Google Scholar 

  16. Wu JS, Buettner C, Smithline H, Ngo LH, Greenman RL. Evaluation of skeletal muscle during calf exercise by 31-phosphorus magnetic resonance spectroscopy in patients on statin medications. Muscle Nerve. 2011;43(1):76–81.

    Article  CAS  Google Scholar 

  17. Dirks AJ, Jones KM. Statin-induced apoptosis and skeletal myopathy. Am J Physiol Cell Physiol. 2006;291(6):C1208–12.

    Article  CAS  Google Scholar 

  18. Johnson TE, Zhang X, Bleicher KB, Dysart G, Loughlin AF, Schaefer WH, et al. Statins induce apoptosis in rat and human myotube cultures by inhibiting protein geranylgeranylation but not ubiquinone. Toxicol Appl Pharmacol. 2004;200(3):237–50.

    Article  CAS  Google Scholar 

  19. Sacher J, Weigl L, Werner M, Szegedi C, Hohenegger M. Delineation of myotoxicity induced by 3-hydroxy-3-methylglutaryl CoA reductase inhibitors in human skeletal muscle cells. J Pharmacol Exp Ther. 2005;314(3):1032–41.

    Article  CAS  Google Scholar 

  20. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci U S A. 2001;98(25):14250–5.

    Article  CAS  Google Scholar 

  21. Tricarico PM, Crovella S, Celsi F. Mevalonate pathway blockade, mitochondrial dysfunction and autophagy: a possible link. Int J Mol Sci. 2015;16(7):16067–84.

    Article  CAS  Google Scholar 

  22. van der Burgh R, Nijhuis L, Pervolaraki K, Compeer EB, Jongeneel LH, van Gijn M, et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1beta hypersecretion. J Biol Chem. 2014;289(8):5000–12.

    Article  Google Scholar 

  23. Seachrist JL, Loi CM, Evans MG, Criswell KA, Rothwell CE. Roles of exercise and pharmacokinetics in cerivastatin-induced skeletal muscle toxicity. Toxicol Sci. 2005;88(2):551–61.

    Article  CAS  Google Scholar 

  24. Bouitbir J, Sanvee GM, Panajatovic MV, Singh F, Krahenbuhl S. Mechanisms of statin-associated skeletal muscle-associated symptoms. Pharmacol Res. 2019:104201.

    Google Scholar 

  25. Bouitbir J, Charles AL, Echaniz-Laguna A, Kindo M, Daussin F, Auwerx J, et al. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J. 2012;33(11):1397–407.

    Article  CAS  Google Scholar 

  26. Nakahara K, Kuriyama M, Sonoda Y, Yoshidome H, Nakagawa H, Fujiyama J, et al. Myopathy induced by HMG-CoA reductase inhibitors in rabbits: a pathological, electrophysiological, and biochemical study. Toxicol Appl Pharmacol. 1998;152(1):99–106.

    Article  CAS  Google Scholar 

  27. Fukami M, Maeda N, Fukushige J, Kogure Y, Shimada Y, Ogawa T, et al. Effects of HMG-CoA reductase inhibitors on skeletal muscles of rabbits. Res Exp Med. 1993;193(5):263–73.

    Article  CAS  Google Scholar 

  28. Schaefer WH, Lawrence JW, Loughlin AF, Stoffregen DA, Mixson LA, Dean DC, et al. Evaluation of ubiquinone concentration and mitochondrial function relative to cerivastatin-induced skeletal myopathy in rats. Toxicol Appl Pharmacol. 2004;194(1):10–23.

    Article  CAS  Google Scholar 

  29. Laaksonen R, Jokelainen K, Sahi T, Tikkanen MJ, Himberg JJ. Decreases in serum ubiquinone concentrations do not result in reduced levels in muscle tissue during short-term simvastatin treatment in humans. Clin Pharmacol Ther. 1995;57(1):62–6.

    Article  CAS  Google Scholar 

  30. Laaksonen R, Jokelainen K, Laakso J, Sahi T, Harkonen M, Tikkanen MJ, et al. The effect of simvastatin treatment on natural antioxidants in low-density lipoproteins and high-energy phosphates and ubiquinone in skeletal muscle. Am J Cardiol. 1996;77(10):851–4.

    Article  CAS  Google Scholar 

  31. Larsen S, Stride N, Hey-Mogensen M, Hansen CN, Bang LE, Bundgaard H, et al. Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance. J Am Coll Cardiol. 2013;61(1):44–53.

    Article  CAS  Google Scholar 

  32. Lamb GD, Junankar PR, Stephenson DG. Raised intracellular [Ca2+] abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad. J Physiol 1995;489 ( Pt 2):349–362.

    Article  CAS  Google Scholar 

  33. Sirvent P, Mercier J, Vassort G, Lacampagne A. Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle. Biochem Biophys Res Commun. 2005;329(3):1067–75.

    Article  CAS  Google Scholar 

  34. Sirvent P, Bordenave S, Vermaelen M, Roels B, Vassort G, Mercier J, et al. Simvastatin induces impairment in skeletal muscle while heart is protected. Biochem Biophys Res Commun. 2005;338(3):1426–34.

    Article  CAS  Google Scholar 

  35. Liantonio A, Giannuzzi V, Cippone V, Camerino GM, Pierno S, Camerino DC. Fluvastatin and atorvastatin affect calcium homeostasis of rat skeletal muscle fibers in vivo and in vitro by impairing the sarcoplasmic reticulum/mitochondria Ca2+−release system. J Pharmacol Exp Ther. 2007;321(2):626–34.

    Article  CAS  Google Scholar 

  36. Kantola T, Kivisto KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther. 1998;64(2):177–82.

    Article  CAS  Google Scholar 

  37. Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation. 1998;97(12):1129–35.

    Article  CAS  Google Scholar 

  38. Sirvent P, Fabre O, Bordenave S, Hillaire-Buys D, Raynaud De Mauverger E, Lacampagne A, et al. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins. Toxicol Appl Pharmacol. 2012;259(2):263–8.

    Article  CAS  Google Scholar 

  39. Galtier F, Mura T, Raynaud de Mauverger E, Chevassus H, Farret A, Gagnol JP, et al. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers. Toxicol Appl Pharmacol. 2012;263(3):281–6.

    Article  CAS  Google Scholar 

  40. Draeger A, Sanchez-Freire V, Monastyrskaya K, Hoppeler H, Mueller M, Breil F, et al. Statin therapy and the expression of genes that regulate calcium homeostasis and membrane repair in skeletal muscle. Am J Pathol. 2010;177(1):291–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeltje A. E. Allard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allard, N.A.E., Timmers, S. (2020). The Role of the Mitochondria in SAMS. In: Thompson, P., Taylor, B. (eds) Statin-Associated Muscle Symptoms. Contemporary Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-33304-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33304-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33303-4

  • Online ISBN: 978-3-030-33304-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics