Skip to main content

The Transmission Electron Microscope

  • Chapter
  • First Online:
Advanced Computing in Electron Microscopy

Abstract

This chapter gives a short description of the physical instrumentation of the transmission electron microscope (fixed beam and scanned probe modes). It starts with the fundamental physics of electron dynamics for energies in the range 60–1000 keV. Some types of magnetic lenses and aberration correctors used to focus the electrons in the microscope are discussed. Various approximations used in modeling the microscope are introduced. Optical aberrations are defined, and general methods of aberration correction are described briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Behan, E. C. Cosgriff, Angus I. Kirkland, and Peter D. Nellist. Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Phil. Trans. R. Soc. A, 367:3825–3844, 2009.

    Article  ADS  Google Scholar 

  2. G. Binnig and H. Rohrer. Scanning tunneling microscopy - from birth to adolescence. Rev. Modern Physics, 59:615–625, 1987.

    Article  ADS  Google Scholar 

  3. M. Born and E. Wolf. Principles of Optics. Pergamon Press, Oxford, 6th edition, 1980.

    MATH  Google Scholar 

  4. D. K. Bowen and C. R. Hall. Microscopy of Materials. MacMillan Press, London, 1975.

    Book  Google Scholar 

  5. J. J. Bozzola and L. D. Russell. Electron Microscopy, Princ. and Tech. for Biologists, 2nd edit. Jones and Bartlett, Sudbury, Mass., 1999.

    Google Scholar 

  6. T. F. Budinger and R. M. Glaeser. Measurement of focus and spherical aberration of an electron microscope objective lens. Ultramicroscopy, 2:31–41, 1976.

    Article  Google Scholar 

  7. P. R. Buseck, J. M. Cowley, and L. Eyring, editors. High-Resolution Transmission Electron Microscopy. Oxford Univ. Press, New York, 1988.

    Google Scholar 

  8. Ewen Callaway. Molecular-imaging pioneers scoop nobel. Nature, 550:167, 2017.

    Article  ADS  Google Scholar 

  9. J. M. Cowley. Image contrast in a transmission scanning electron microscope. Appl. Phys. Letters, 15:58–59, 1969.

    Article  ADS  Google Scholar 

  10. A. V. Crewe, J. Wall, and L. M. Welter. A high-resolution scanning transmission electron microscope. J. Applied Physics, 39:5861–5868, 1968.

    Article  ADS  Google Scholar 

  11. A. J. D’Alfonso, A. J. Morgan, A. W. C. Yan, P. Wang, H. Sawada, A. I. Kirkland, and L. J. Allen. Deterministic electron ptychography at atomic resolution. Phys. Rev. B, 89:064101, 2014.

    Article  ADS  Google Scholar 

  12. M. Op de Beck. Comments on the use of the relativistic Schrodinger equation in high-energy electron diffraction. In G. W. Bailey and C. L. Rieder, editors, Proceedings of the 51th Annual Meeting of the Microscopy Society of America, pages 1212–1213. San Francisco Press, 1993.

    Google Scholar 

  13. J. W. Edington. Practical Electron Microscopy in Materials Science. Van Nostrand Reinhold, New York, 1976.

    Google Scholar 

  14. J. J. Einspahr and P. M. Voyles. Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy, 106:1041–1052, 2006.

    Article  Google Scholar 

  15. A. B. El-Kareh and J. C. J. El-Kareh. Electron Beams, Lenses, and Optics, Vol. 1,2. Academic Press, New York, 1970.

    Chapter  Google Scholar 

  16. A. Engel. The principle of reciprocity and its application to conventional and scanning dark field electron microscopy. Optik, 41:117–126, 1974.

    Google Scholar 

  17. R. Erni. Aberration-Corrected Imaging in Transmission Electron Microscopy. Imperial College Press, London, 2nd edition, 2015.

    Book  Google Scholar 

  18. H. A. Ferwerda, B. J. Hoenders, and C. H. Slump. The fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation. Optica Acta, 33:159–183, 1986.

    Article  ADS  Google Scholar 

  19. H. A. Ferwerda, B. J. Hoenders, and C. H. Slump. Fully relativistic treatment of electron-optical image formation based on the Dirac equation. Optica Acta, 33:145–157, 1986.

    Article  ADS  Google Scholar 

  20. S. D. Findlay and J. M. LeBeau. Detector non-uniformity in scanning transmission electron microscopy. Ultramicroscopy, 124:52–60, 2013.

    Article  Google Scholar 

  21. S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara. Dynamics of annular bright field scanning transmission electron microscopy. Ultramicroscopy, 110:903–923, 2010.

    Article  Google Scholar 

  22. S. D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, and Y. Ikuhara. Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett., 95:191913, 2009.

    Article  ADS  Google Scholar 

  23. J. Frank. Three Dimensional Electron Microscopy of Macromolecular Assemblies. Oxford Univ. Press, New York, 2006.

    Book  Google Scholar 

  24. S. P. Frigo, Z. H. Levine, and N. J. Zaluzec. Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Applied Physics Letters, 81:2112–2114, 2002.

    Article  ADS  Google Scholar 

  25. K. Fujiwara. Relativistic dynamical theory of electron diffraction. J. Physical Society of Japan, 16:2226–2238, 1961.

    Article  ADS  Google Scholar 

  26. B. Fultz and J. M. Howe. Transmission Electron Microscopy and Diffractometry of Materials. Springer-Verlag, Berlin, fourth edition, 2013.

    Google Scholar 

  27. Joseph I. Goldstein, Dale E. Newbury, Joseph R. Michael, Nicholas W. M. Ritchie, John Henry J. Scott, and David C. Joy. Scanning Electron Microscopy and X-Ray Microanalysis. Springer, New York, fourth edition, 2018.

    Google Scholar 

  28. M. De Graf. Intro. to Conventional Transmission Electron Microscopy. Cambridge Univ. Press, Cambridge, UK, 2003.

    Google Scholar 

  29. P. Grivet. Electron Optics, Parts 1 and 2. Pergamon, Oxford, 2nd English edition, 1972.

    Chapter  Google Scholar 

  30. F. Haguenau, P. W. Hawkes, J. L. Hutchison, B. Satiat-Jeunemaître, and G. T. Simon. Key events in the history of electron microscopy. Micros. and Microanal., 9:96–138, 2003.

    Article  ADS  Google Scholar 

  31. M. Haider, A. Epstein, P. Jarron, and C. Boulin. A versatile, software configurable multichannel STEM detector for angle-resolved imaging. Ultramicroscopy, 54:41–59, 1994.

    Article  Google Scholar 

  32. M. Haider, P. Hartel, H. Müller, S. Uhlemann, and J. Zach. Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. R. Soc. A, 367:3665–3682, 2009.

    Article  ADS  Google Scholar 

  33. M. Haider, S. Uhlemann, and J. Zach. Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy, 81:163–175, 2000.

    Article  Google Scholar 

  34. C. E. Hall. Introduction to Electron Microscopy. McGraw-Hill, New York, 2nd edition, 1966.

    MATH  Google Scholar 

  35. T. Hanai, H. Yoshida, and M. Hibino. Characteristics and effectiveness of a foil lens for correction of spherical aberration in scanning transmission electron microscopy. J. Elect. Micros., 47:185–192, 1998.

    Article  Google Scholar 

  36. A. Hashimoto, M. Shimojo, K. Mitsuishi, and Masaki Takeguchi. Three-dimensional optical sectioning by scanning confocal electron microscopy with stage-scanning system. Micros. and Microanal., 16:233–238, 2010.

    Article  ADS  Google Scholar 

  37. P. W. Hawkes, editor. The Beginnings of Electron Microscopy. Adv. in Electronics and Electron Physics, Suppl. 16. Academic Press, London, 1985.

    Google Scholar 

  38. P. W. Hawkes, editor. Aberration-corrected Electron Microscopy. Adv. in Imaging and Electron Physics, Vol. 153. Academic Press, Amsterdam, 2008.

    Google Scholar 

  39. P. W. Hawkes. The correction of electron lens aberrations. Ultramicroscopy, 156:A1–A64, 2015.

    Article  Google Scholar 

  40. P. W. Hawkes and E. Kasper. Principles of Electron Optics, volume 1. Academic Press, San Diego, 1989. Basic Geometrical Optics.

    Google Scholar 

  41. P. W. Hawkes and E. Kasper. Principles of Electron Optics, volume 3. Academic Press, San Diego, 1994. Wave Optics.

    Chapter  Google Scholar 

  42. R. D. Heidenreich. Fundamentals of Transmission Electron Microscopy. Wiley, New York, 1964.

    Google Scholar 

  43. K.-H. Herrmann. The present state of instrumentation in high-resolution electron microscopy. J. Phys. E: Sci. Instrum., 11:1076–1091, 1978.

    Article  ADS  Google Scholar 

  44. K.-H. Herrmann. Instrumentational requirements for high resolution imaging. J. of Microscopy, 131:67–78, 1983.

    Article  Google Scholar 

  45. P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan. Electron Microscopy of Thin Crystals. Krieger, Huntington, New York, second edition, 1977.

    Google Scholar 

  46. S. Horiuchi. Fundamentals of High Resolution Transmission Electron Microscopy. North-Holland, Amsterdam, 1994.

    Google Scholar 

  47. R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, and E. Abe. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mat., 10:278–281, 2011.

    Article  ADS  Google Scholar 

  48. Ryo Ishikawa, Andrew R. Lupini, Scott D. Findlay, and Stephen J. Pennycook. Quantitative annular dark field electron microscopy using electron signals. Microscopy and Microanalysis, 20:99–110, 2014.

    Article  ADS  Google Scholar 

  49. K. Ishizuka. Coma-free alignment of a high-resolution electron microscope with three-fold astigmatism. Ultramicroscopy, 55:407–418, 1994.

    Article  Google Scholar 

  50. R. Jagannathan. Quantum theory of electron lenses based on the Dirac equation. Phys. Rev. A, 42:6674–6689, 1990.

    Article  ADS  Google Scholar 

  51. R. Jagannathan, R. Simon, E. C. G. Sudarshan, and N. Mukunda. Quantum theory of magnetic electron lenses based on the Dirac equation. Physics Letters A, 134:457–464, 1989.

    Article  ADS  MathSciNet  Google Scholar 

  52. David C. Joy. Monte Carlo Modeling for Electron Microscopy and Analysis. Oxford Univ. Press, New York, 1995.

    Google Scholar 

  53. T. Kaneko, A. Saitow, T. Fujino, E. Okunishi, and H. Sawada. Development of a high-efficiency DF-STEM detector. J. Phys: Conference Series, 522:012050, 2014.

    Google Scholar 

  54. R. J. Keyse, A. J. Garratt-Reed, P. J. Goodhew, and G. W. Lorimer. Intro. to Scanning Transmission Electron Microscopy. Springer-Verlag, New York, 1998.

    Google Scholar 

  55. E. J. Kirkland and M. G. Thomas. A high efficiency annular dark field detector for STEM. Ultramicroscopy, 62:79–88, 1996.

    Article  Google Scholar 

  56. O. Klemperer and M. E. Barnett. Electron Optics. Cambridge Univ. Press, Cambridge, Great Britain, third edition, 1971.

    Google Scholar 

  57. M. Knoll and E. Ruska. Das elektronenmikroskop. Z. fur Physik, 78:318–339, 1932.

    Article  ADS  Google Scholar 

  58. H. Koops. Aberration correction in electron microscopy. In J. M. Sturgess, editor, Proceedings of the Ninth International Congress on Electron Microscopy, volume 3, pages 185–196, Ontario, Canada, 1978. Imperial Press.

    Google Scholar 

  59. O. L. Krivanek. A method for determining the coefficient of spherical aberration from a single electron micrograph. Optik, 45:97–101, 1976.

    Google Scholar 

  60. O. L. Krivanek. Three fold astigmatism in high resolution transmission electron microscopy. Ultramicroscopy, 55:419–433, 1994.

    Article  Google Scholar 

  61. O. L. Krivanek, G. J. Corbin, N. Dellby, B. F. Elson, R. J. Keyse, M. F. Murfit, C. S. Own, Z. S. Szilagi, and J. W. Woodruff. An electron microscope for the aberration-corrected era. Ultramicroscopy, 108:179–195, 2008.

    Article  Google Scholar 

  62. O.L. Krivanek, N. Dellby, and A.R. Lupini. Towards sub-Å electron beams. Ultramicroscopy, 78:1–11, 1999.

    Article  Google Scholar 

  63. Ondrej L. Krivanek, Niklas Dellby, and Matthew F. Murfit. Aberration correction in electron microscopy. In J. Orloff, editor, Handbook of Charged Particle Optics, 2nd edit., pages 601–640. CRC Press, Taylor and Francis, Boca Raton, 2009.

    Google Scholar 

  64. W. Kunath, F. Zemlin, and K. Weiss. Apodization in phase-contrast electron microscopy realized with hollow-cone illumination. Ultramicroscopy, 16:123–138, 1985.

    Article  Google Scholar 

  65. A. R. Lupini, A. Y. Borisevich, J. C. Idrobo, H. M. Christen, M. Biegalski, and S. J. Pennycook. Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Micros. and Microanal., 15:441–453, 2009.

    Article  ADS  Google Scholar 

  66. D. McMulan. Scanning electron microscopy 1928–1965. Scanning, 17:175–185, 1995.

    Article  Google Scholar 

  67. G. McMullan, A. T. Clark, R. Turchetta, and A. R. Faruqi. Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy, 109:1411–1416, 2009.

    Article  Google Scholar 

  68. G. McMullan, A. R. Faruqi, D. Clare, and R. Henderson. Comparison of optimal performance at 300 keV of three direct electron detectors for use in low electron microscopy. Ultramicroscopy, 147:156–163, 2014.

    Article  Google Scholar 

  69. G. A. Meek. Practical Electron Microscopy for Biologists. Wiley, London, second edition, 1976.

    Google Scholar 

  70. T. Mulvey, editor. The Growth of Electron Microscopy, volume 96 of Adv. in Imaging and Electron Physics. Academic Press, San Diego, 1996.

    Google Scholar 

  71. P. D. Nellist and J. M. Rodenburg. Electron ptychography. I. experimental demonstration beyond the conventional resolution limits. Acta Cryst., A54:49–6, 1998.

    Article  Google Scholar 

  72. C. W. Oatley, D. McMullan, and K. C. A. Smith. The development of the scanning electron microscope. In L. Marton and C. Marton, editors, Advances in Electronics and Electron Physics, Suppl. 16, pages 443–482. Academic Press, New York, 1985.

    Google Scholar 

  73. L. C. Oldfiled. Computer design of high frequency electron-optical systems. In P. W. Hawkes, editor, Image Processing and Computer-Aided Design in Electron Optics, pages 370–399. Academic Press, London, 1973.

    Google Scholar 

  74. Colin Ophus. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microscopy and Microanalysis, 25:563–582, 2019.

    Article  ADS  Google Scholar 

  75. J. Orloff, editor. Handbook of Charged Particle Optics, 2nd edit. CRC Press, Taylor and Francis, Boca Raton, 2009.

    Google Scholar 

  76. M. T. Otten and W. M. J. Coene. High resolution imaging on a field emission TEM. Ultramicroscopy, 48:77–91, 1993.

    Article  Google Scholar 

  77. Stephen J. Pennycook and Peter D. Nellist, editors. Scanning Transmission Electron Microscopy, Imaging and Analysis. Springer, NY, 2011.

    Google Scholar 

  78. T. Plamann and J. M. Rodenburg. Electron ptychography. II. theory of three-dimensional propagation effects. Acta Cryst., A54:61–73, 1998.

    Article  Google Scholar 

  79. A. P. Pogany and P. S. Turner. Reciprocity in electron diffraction and microscopy. Acta Cryst., A24:103–109, 1968.

    Article  Google Scholar 

  80. L. Reimer. Scanning Electron Microscopy, volume 45 of Spring Series in Optical Sciences. Springer-Verlag, New York, 1985.

    Google Scholar 

  81. L. Reimer. Transmission Electron Microscopy, volume 36 of Spring Series in Optical Sciences. Springer-Verlag, New York, third edition, 1993.

    Google Scholar 

  82. L. Reimer. Energy-Filtering Transmission Electron Microscopy, volume 71 of Spring Series in Optical Sciences. Springer-Verlag, New York, 1995.

    Google Scholar 

  83. J. M. Rodenburg and R. H. T. Bates. The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Phil. Trans. Roy. Soc. Lond. A, 339:521–553, 1992.

    ADS  Google Scholar 

  84. H. Rose. Nonstandard imaging methods in electron microscopy. Ultramicroscopy, 2:251–267, 1977.

    Article  Google Scholar 

  85. H. Rose. Correction of aperture aberrations in magnetic systems with threefold symmetry. Nuclear Instruments and Methods, 187:187–199, 1981.

    Article  ADS  Google Scholar 

  86. H. Rose. Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik, 85:19–24, 1990.

    MathSciNet  Google Scholar 

  87. H. Rose. History of direct aberration correction. In Aberration-corrected Electron Microscopy, volume 153 of Adv. in Imaging and Electron Physics, pages 3–39. Academic Press, Amsterdam, 2008.

    Google Scholar 

  88. H. H. Rose. Historical aspects of aberrations correction. J. Elect. Micros., 58:77–85, 2009.

    Article  Google Scholar 

  89. Harald Rose. Geometrical Charged-Particle Optics. Springer, New York, second edition, 2012.

    Google Scholar 

  90. Axel Rother and Kurt Scheerschmidt. Relativistic effects in elastic scattering of electrons in TEM. Ultramicroscopy, 109:154–160, 2009.

    Article  Google Scholar 

  91. E. Ruska. The development of the electron microscope and of electron microscopy. Rev. Modern Physics, 59:627–638, 1987.

    Article  ADS  Google Scholar 

  92. H. Sawada, T. Sannomiya, F. Hosokawa, T. Nakamichi, T. Kaneyama, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, and K. Takayanagi. Measurement method of aberration from ronchigram by autocorrelation function. Ultramicroscopy, 108:1467–1475, 2008.

    Article  Google Scholar 

  93. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, Koji Kimoto, and K. Suenaga. Correction of higher order geometrical aberration by triple 3-fold astigmatism field. J. Elect. Micros., 58:341–347, 2009.

    Article  Google Scholar 

  94. O. Scherzer. Sphaerische und chromatische korrektur von elektronenlinsen. Optik, 2:114–132, 1947.

    Google Scholar 

  95. O. Scherzer. The theoretical resolution limit of the electron microscope. J. Applied Physics, 20:20–29, 1949.

    Article  ADS  MATH  Google Scholar 

  96. A. Septier. The struggle to overcome spherical aberration in electron optics. In Adv. in Optical and Electron Microscopy, volume 1, pages 204–274. Academic Press, London, 1966.

    Google Scholar 

  97. A. Septier, editor. Applied Charged Particle Optics, volume 13A,B of Adv. in Electronics and Electron Physics. Academic Press, New York, 1980.

    Google Scholar 

  98. Colin J. R. Sheppard. Orthogonal aberration functions for high-aperture optical systems. J. Opt. Soc. Am. A, 21:832–838, 2004.

    Article  Google Scholar 

  99. D. J. Smith. Instrumentation and operation for high-resolution electron microscopy. In T. Mulvey and C. J. R. Sheppard, editors, Adv. in Optical and Electron Microscopy, volume 11, pages 1–55. Academic Press, London, 1989.

    Google Scholar 

  100. D. J. Smith. The realization of atomic resolution with the electron microscope. Rep. Prog. Physics, 60:1513–1580, 1997.

    Article  ADS  Google Scholar 

  101. D. J. Smith. Development of aberration-corrected electron microscopy. Microsc. and Microanalysis, 14:2–15, 2008.

    Article  ADS  Google Scholar 

  102. D. J. Smith. Progress and perspectives for atomic-resolution electron microscopy. Ultramicroscopy, 108:159–166, 2008.

    Article  Google Scholar 

  103. J. C. H. Spence. High-Resolution Electron Microscopy. Oxford University Press, New York, fourth edition, 2013.

    Google Scholar 

  104. Masaki Takeguchi1, Ayako Hashimoto1, Masayuki Shimojo, Kazutaka Mitsuishi, and Kazuo Furuya. Development of a stage-scanning system for high-resolution confocal STEM. J. Electron Micr., 57:123–127, 2008.

    Google Scholar 

  105. Nobuo Tanaka, editor. Scanning Transmission Electron Microscopy of Nanomaterials. Imperial College Press, London, 2015.

    Google Scholar 

  106. M. W. Tate, P. Purohit, D. Chamberlain, K. X. Nguyen, R. Hovden, C. S. Chang, P. Deb, E. Turgut, J. T. Heron, D. G. Schlom, D. C. Ralph, G. D. Fuchs, K. S Shanks, H. T. Philipp, D. A. Muller, and S. M. Gruner. High dynamic range pixel array detector for scanning transmission electron microscope. Microscopy and Microanalysis, 22:237–249, 2016.

    Article  ADS  Google Scholar 

  107. A. Thust, J. Barthel, L. Houben, C. L. Jia, M. Lentzen, K. Tillmann, and K. Urban. Strategies for aberration control in sub-angstrom HRTEM. Microscopy and Microanalysis, 11 suppl. 2:58–59, 2005.

    Google Scholar 

  108. S. Uhlemann and M. Haider. Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy, 72:109–119, 1998.

    Article  Google Scholar 

  109. M. vonArdenne. Das elektronen-rastermikroskop. Z. fur Physik, 109:553–572, 1938.

    Google Scholar 

  110. D. B. Williams and C. B. Carter. Transmission Electron Microscopy, A Textbook for Materials Science. Springer, New York, second edition, 2009.

    Google Scholar 

  111. T. Wilson and C. Sheppard. Theory and Practice of Scanning Optical Microscopy. Academic Press, London, 1984.

    Google Scholar 

  112. K. Wong, E. Kirkland, P. Xu, R. Loane, and J. Silcox. Measurement of spherical aberration in STEM. Ultramicroscopy, 40:139–150, 1992.

    Article  Google Scholar 

  113. Huolin L. Xin and D. A. Muller. Three-dimensional imaging in aberration-corrected electron microscope. Micros. and Microanal., 16:445–455, 2010.

    Article  Google Scholar 

  114. N. J. Zaluzec. The scanning confocal electron microscope. Microscopy Today, Nov./Dec.:8–12, 2003.

    Google Scholar 

  115. E. Zeitler and M. G. R. Thomson. Scanning transmission electron microscopy. Optik, 31:258–366, 1970.

    Google Scholar 

  116. F. Zemlin, K. Weiss, P. Schiske, W. Kunath, and K.-H. Herrman. Coma free alignment of high resolution electron microscopes with the aid of optical diffractograms. Ultramicroscopy, 3:49–60, 1978.

    Article  Google Scholar 

  117. Jian Min Zuo and John C. H. Spence. Advanced Transmission Electron Microscopy, Imaging and Diffraction in Nanoscience. Springer, New York, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirkland, E.J. (2020). The Transmission Electron Microscope. In: Advanced Computing in Electron Microscopy. Springer, Cham. https://doi.org/10.1007/978-3-030-33260-0_2

Download citation

Publish with us

Policies and ethics