Skip to main content

Mixture Probabilistic Principal Geodesic Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11846))

Abstract

Dimensionality reduction on Riemannian manifolds is challenging due to the complex nonlinear data structures. While probabilistic principal geodesic analysis (PPGA) has been proposed to generalize conventional principal component analysis (PCA) onto manifolds, its effectiveness is limited to data with a single modality. In this paper, we present a novel Gaussian latent variable model that provides a unique way to integrate multiple PGA models into a maximum-likelihood framework. This leads to a well-defined mixture model of probabilistic principal geodesic analysis (MPPGA) on sub-populations, where parameters of the principal subspaces are automatically estimated by employing an Expectation Maximization algorithm. We further develop a mixture Bayesian PGA (MBPGA) model that automatically reduces data dimensionality by suppressing irrelevant principal geodesics. We demonstrate the advantages of our model in the contexts of clustering and statistical shape analysis, using synthetic sphere data, real corpus callosum, and mandible data from human brain magnetic resonance (MR) and CT images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banerjee, M., Jian, B., Vemuri, B.C.: Robust Fréchet mean and PGA on riemannian manifolds with applications to neuroimaging. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_1

    Chapter  Google Scholar 

  2. Bishop, C.M.: Bayesian PCA. In: Advances in Neural Information Processing Systems, pp. 382–388 (1999)

    Google Scholar 

  3. Bishop, C.M.: Pattern recognition and machine learning, pp. 500–600 (2006)

    Google Scholar 

  4. Chen, J., Liu, J.: Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 38(4), 1478–1488 (1999)

    Article  Google Scholar 

  5. Chung, M.K., Qiu, A., Seo, S., Vorperian, H.K.: Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in ct images. Med. Image Anal. 22(1), 63–76 (2015)

    Article  Google Scholar 

  6. Cootes, T.F., Taylor, C.J.: A mixture model for representing shape variation. Image Vis. Comput. 17(8), 567–573 (1999)

    Article  Google Scholar 

  7. Do Carmo, M.: Riemannian Geometry. Birkhauser (1992)

    Google Scholar 

  8. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  Google Scholar 

  9. Fletcher, P.T.: Geodesic regression and the theory of least squares on riemannian manifolds. Int. J. Comput. Vis. 105(2), 171–185 (2013)

    Article  MathSciNet  Google Scholar 

  10. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  11. Fletcher, P.T., Zhang, M.: Probabilistic geodesic models for regression and dimensionality reduction on riemannian manifolds. In: Turaga, P.K., Srivastava, A. (eds.) Riemannian Computing in Computer Vision, pp. 101–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22957-7_5

    Chapter  Google Scholar 

  12. Jolliffe, I.T.: Principal component analysis and factor analysis. In: Jolliffe, I.T. (ed.) Principal Component Analysis. Springer Series in Statistics, pp. 115–128. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1904-8_7

    Chapter  Google Scholar 

  13. Kaufman, L., Rousseeuw, P.J.: Partitioning around medoids (program PAM). In: Finding Groups in Data: An Introduction to Cluster Analysis, pp. 68–125 (1990)

    Google Scholar 

  14. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MathSciNet  Google Scholar 

  15. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strat. Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  16. Mardia, K.V., Jupp, P.E.: Directional Statistics, vol. 494. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  17. Obata, M.: Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Jpn. 14(3), 333–340 (1962)

    Article  MathSciNet  Google Scholar 

  18. Roweis, S.T.: EM algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems, pp. 626–632 (1998)

    Google Scholar 

  19. Sommer, S., Lauze, F., Hauberg, S., Nielsen, M.: Manifold valued statistics, exact principal geodesic analysis and the effect of linear approximations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 43–56. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_4

    Chapter  Google Scholar 

  20. Sommer, S., Lauze, F., Nielsen, M.: Optimization over geodesics for exact principal geodesic analysis. Adv. Comput. Math. 40(2), 283–313 (2014)

    Article  MathSciNet  Google Scholar 

  21. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 63(2), 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  22. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  23. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MathSciNet  Google Scholar 

  24. Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on grassmann and stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–2286 (2011)

    Article  Google Scholar 

  25. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1713–1727 (2008)

    Article  Google Scholar 

  26. Zhang, M., Fletcher, P.T.: Probabilistic principal geodesic analysis. In: Advances in Neural Information Processing Systems, pp. 1178–1186 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Xing, J., Zhang, M. (2019). Mixture Probabilistic Principal Geodesic Analysis. In: Zhu, D., et al. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. MBIA MFCA 2019 2019. Lecture Notes in Computer Science(), vol 11846. Springer, Cham. https://doi.org/10.1007/978-3-030-33226-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33226-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33225-9

  • Online ISBN: 978-3-030-33226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics