Skip to main content

Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11846))

Abstract

To address automatic segmentation of brain tumor from multi-modal MRI volumes, a light-weight encoder-decoder network is presented. Exploring effective way to trade off the range of spatial contexts and computational efficiency is crucial to address challenges of 3D segmentation. To this end, we introduce hierarchical separable convolution (HSC), an integration of view- and group-wise separable convolution, which can simultaneously encode multi-scale context in 3D and reduce memory overhead without sacrificing accuracy. Specifically, typical 3D convolution is replaced with complementary 2D convolutions at multiple scales and thus multiple fields-of-view, which results in a light-weight but stronger model. Moreover, thanks to the decomposed convolutions, we ensemble 3D segmentations with different focal views to further improve segmentation accuracy. Experiments on the BRATS 2017 benchmark showed that our method achieved state-of-the-art performance in Dice, i.e., 0.901, 0.809 and 0.762 for the whole tumor, tumor core and enhancing tumor core, respectively.

Supported by National Natural Science Foundation of China (11771160) and Fujian Science and Technology Project (2019H0016).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.med.upenn.edu/sbia/brats2017.html.

  2. 2.

    http://www.tensorflow.org.

  3. 3.

    http://niftynet.io.

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Gao, S., Cheng, M., Zhao, K., et al.: Res2Net: a new multi-scale backbone architecture. In: 32th CVPR, Long Beach, CA (2019)

    Google Scholar 

  3. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  4. Li, Y., Shen, L.: Deep learning based multimodal brain tumor diagnosis. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 149–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_13

    Chapter  Google Scholar 

  5. Havaei, M., Davy, A., Warde-Farley, D., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

    Article  Google Scholar 

  6. Kamnitsas, K., Ledig, C., Newcombe, V.F., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  7. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: Brain tumor segmentation and radiomics survival prediction: contribution to the BRATS 2017 challenge. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 287–297. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_25

    Chapter  Google Scholar 

  8. Zhao, X., Wu, Y., Song, G., et al.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med. Image Anal. 43, 98–111 (2018)

    Article  Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 4th International Conference on 3D Vision, Stanford, CA, pp. 565–571. IEEE (2016)

    Google Scholar 

  10. Casamitjana, A., Catà, M., Sánchez, I., Combalia, M., Vilaplana, V.: Cascaded V-Net using ROI masks for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 381–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_33

    Chapter  Google Scholar 

  11. Marcinkiewicz, M., Nalepa, J., Lorenzo, P.R., Dudzik, W., Mrukwa, G.: Segmenting brain tumors from MRI using cascaded multi-modal U-Nets. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 13–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_2

    Chapter  Google Scholar 

  12. Pereira, S., Alves, V., Silva, C.A.: Adaptive feature recombination and recalibration for semantic segmentation: application to brain tumor segmentation in MRI. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 706–714. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_81

    Chapter  Google Scholar 

  13. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  14. Islam, M., Ren, H.: Class balanced PixelNet for neurological image segmentation. In: 6th ICBCB, Chengdu, China, pp. 83–87. ACM (2018)

    Google Scholar 

  15. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: 16th ICCV, Venice, Italy, pp. 5533–5541. IEEE (2017)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., et al.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  17. Kingma, D. P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Hu, P., Wu, F., Peng, J., et al.: Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys. Med. Biol. 61(24), 8676 (2016)

    Article  Google Scholar 

  19. Zhou, H. Y., Gao, B. B., Wu, J.: Adaptive feeding: Achieving fast and accurate detections by adaptively combining object detectors. In: 16th ICCV, Venice, Italy, pp. 3505–3513. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialin Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, Z., Yuan, Z., Peng, J. (2019). Multimodal Brain Tumor Segmentation Using Encoder-Decoder with Hierarchical Separable Convolution. In: Zhu, D., et al. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. MBIA MFCA 2019 2019. Lecture Notes in Computer Science(), vol 11846. Springer, Cham. https://doi.org/10.1007/978-3-030-33226-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33226-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33225-9

  • Online ISBN: 978-3-030-33226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics