Skip to main content

Biological Knowledge Guided Deep Neural Network for Brain Genotype-Phenotype Association Study

  • Conference paper
  • First Online:
Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy (MBIA 2019, MFCA 2019)

Abstract

Alzheimer’s Disease (AD) is the main cause for age-related dementia. Many machine learning methods have been proposed to identify important genetic bases which are associated to phenotypes indicating the progress of AD. However, the biological knowledge is seldom considered in spite of the success of previous research. Built upon neuroimaging high-throughput phenotyping techniques, a biological knowledge guided deep network is proposed in this paper, to study the genotype-phenotype associations. We organized the Single Nucleotide Polymorphisms (SNPs) according to linkage disequilibrium (LD) blocks, and designed a group 1-D convolutional layer assembling both local and global convolution operations, to process the structural features. The entire neural network is a cascade of group 1-D convolutional layer, 2-D sliding convolutional layer and a multi-layer perceptron. The experimental results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data show that the proposed method outperforms related methods. A set of biologically meaningful LD groups is also identified for phenotype discovery, which is potentially helpful for disease diagnosis and drug design.

This study was partially supported by U.S. NSF IIS 1836945, IIS 1836938, DBI 1836866, IIS 1845666, IIS 1852606, IIS 1838627, IIS 1837956, and NIH AG049371. NIH AG056782.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashford, J.W., Schmitt, F.A.: Modeling the time-course of alzheimer dementia. Curr. Psychiatry Rep. 3(1), 20–28 (2001)

    Article  Google Scholar 

  2. Association, A., et al.: 2017 alzheimer’s disease facts and figures. Alzheimer’s Dement. 13(4), 325–373 (2017)

    Article  Google Scholar 

  3. Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., Tanzi, R.E.: Systematic meta-analyses of alzheimer disease genetic association studies: the alzgene database. Nat. Genet. 39(1), 17 (2007)

    Article  Google Scholar 

  4. Brun, C.C., et al.: Mapping the regional influence of genetics on brain structure variability–a tensor-based morphometry study. Neuroimage 48(1), 37–49 (2009)

    Article  Google Scholar 

  5. Huo, Z., Shen, D., Huang, H.: Genotype-phenotype association study via new multi-task learning model. Pac. Symp. Biocomput. World Sci. 23, 353–364 (2017)

    Google Scholar 

  6. Jin, Y., et al.: Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics. Neuroimage 100, 75–90 (2014)

    Article  Google Scholar 

  7. Kabani, N.J., MacDonald, D.J., Holmes, C.J., Evans, A.C.: 3D anatomical atlas of the human brain. Neuroimage 7(4), S717 (1998)

    Article  Google Scholar 

  8. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint (2014). arXiv:1408.5882

  9. Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: Mach: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34(8), 816–834 (2010)

    Article  Google Scholar 

  10. Sabatti, C., et al.: Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41(1), 35 (2009)

    Article  MathSciNet  Google Scholar 

  11. Saykin, A.J., et al.: Alzheimer’s disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimer’s Dement. 6(3), 265–273 (2010)

    Article  Google Scholar 

  12. Shen, D., Davatzikos, C.: Hammer: hierarchical attribute matching mechanism for elastic registration. In: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001), pp. 29–36. IEEE (2001)

    Google Scholar 

  13. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. imag. 17(1), 87–97 (1998)

    Article  Google Scholar 

  14. Wang, H., et al.: From phenotype to genotype: an association study of longitudinal phenotypic markers to alzheimer’s disease relevant snps. Bioinformatics 28(18), i619–i625 (2012)

    Article  Google Scholar 

  15. Wang, X., Chen, H., Cai, W., Shen, D., Huang, H.: Regularized modal regression with applications in cognitive impairment prediction. In: Advances in Neural Information Processing Systems, pp. 1448–1458 (2017)

    Google Scholar 

  16. Wang, X., Shen, D., Huang, H.: Prediction of memory impairment with MRI data: a longitudinal study of alzheimer’s disease. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 273–281. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_32

    Chapter  Google Scholar 

  17. Wang, X., et al.: Longitudinal genotype-phenotype association study via temporal structure auto-learning predictive model. In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 287–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56970-3_18

    Chapter  Google Scholar 

  18. Wang, Y., et al.: Knowledge-guided robust mri brain extraction for diverse large-scale neuroimaging studies on humans and non-human primates. PloS One 9(1), e77810 (2014)

    Article  Google Scholar 

  19. Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., Shen, D.: Robust deformable-surface-based skull-stripping for large-scale studies. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 635–642. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_78

    Chapter  Google Scholar 

  20. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  21. Yang, T., et al.: Detecting genetic risk factors for alzheimer’s disease in whole genome sequence data via lasso screening. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 985–989. IEEE (2015)

    Google Scholar 

  22. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  23. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain mr images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhan, L., Thompson, P.M., Huang, H. (2019). Biological Knowledge Guided Deep Neural Network for Brain Genotype-Phenotype Association Study. In: Zhu, D., et al. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. MBIA MFCA 2019 2019. Lecture Notes in Computer Science(), vol 11846. Springer, Cham. https://doi.org/10.1007/978-3-030-33226-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33226-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33225-9

  • Online ISBN: 978-3-030-33226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics