Skip to main content

Marine Micro- and Macroalgae in the Polar Night

  • Chapter
  • First Online:
POLAR NIGHT Marine Ecology

Part of the book series: Advances in Polar Ecology ((AVPE,volume 4))

Abstract

Microalgae have unique adaptions including low metabolic activity, utilization of lipid storage, and resting stage formation to survive the Polar Night. Some species are mixotrophic or heterotrophic and do survive periods that are not favorable for photosynthetic (autotrophic) growth, such as the Polar Night. In addition, the autotrophic and mixotrophic species seem to maintain the key components of the photosynthetic apparatus intact during the dark period, which allows them to resume growth rapidly once light comes back in spring. In contrast, some macroalgal species may act as “season anticipators” and utilize the winter darkness or early spring period as their major growth seasons. This chapter elucidates aspects of the ecology of micro- and macroalgae with a focus on the dark season. It is comprised of six parts and starts with an introduction (Sect. “Introduction”) about Arctic marine micro- and macroalgae. Section “The Key Abiotic Environmental Variables Related to Micro- and Macroalgae” reviews the key abiotic environmental variables related to micro- and macroalgal growth and survival. The seasonal development of the different groups of microalgae is described in Sect. “Microalgae”, comprising phytoplankton, microphytobenthos, and sea-ice algae. Section “Macroalgae” introduces the three classes of macroalgae (phaeo-, rhodo-, and chlorophytes) with information about biological variables, seasonal processes, and habitats. Section “Ecophysiology of Algae in the Polar Night” sheds light on the ecophysiology of microalgae and macroalgae in the Polar Night, using selected examples. The last Section “Conclusive Remarks” summarizes our current state of knowledge and provides some conclusions derived from it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamot I, Pokrzywinski K, Johnsen G, Berge J, Sørensen A (2014) Light climate and status of the photosynthetic machinery in macroalgae in the polar night. Ocean Optics, Portland, Maine, Oct 30 Ext abstr 2050, p 15

    Google Scholar 

  • Adey WH, Steneck RS (2001) Thermogeography over time creates biogeographic regions: a temperature/space/time-integrated model and an abundance-weighted test for benthic marine algae. J Phycol 37:677–698

    Google Scholar 

  • Aguirre J, Riding R, Braga JC (2000) Diversity of coralline red algae: origination and extinction patterns from the early Cretaceous to the Pleistocene. Paleobiol 26:651–667. https://doi.org/10.1666/0094-8373(2000)026<0651:DOCRAO>2.0.CO;2

    Article  Google Scholar 

  • Assmy P, Fernández-Méndez M, Duarte P, Meyer A, Randelhoff A, Mundy CJ, Olsen LM, Kauko HM, Bailey A, Chierici M, Cohen L, Doulgeris AP, Ehn JK, Fransson A, Gerland S, Hop H, Hudson SR, Hughes N, Itkin P, Johnsen G, King JA, Koch BP, Koenig Z, Kwasniewski S, Laney SR, Nicolaus M, Pavlov AK, Polashenski CM, Provost C, Rösel A, Sandbu M, Spreen G, Smedsrud LH, Sundfjord A, Taskjelle T, Tatarek A, Wiktor J, Wagner PW, Wold A, Steen H, Granskog MA (2017) Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci Rep 7:40850. https://doi.org/10.1038/srep40850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM et al (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Bartsch I, Paar M, Fredriksen S, Schwanitz M, Daniel C, Hop H, Wiencke C (2016) Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996−1998 and 2012−2014 reflect Arctic warming. Polar Biol 39:2021–2036

    Article  Google Scholar 

  • Belseth E (2012) Eco-physiology of the Arctic kelp species Laminaria solidungula. MSc thesis, NTNU, Trondheim, Norway, 59 pp

    Google Scholar 

  • Berge J, Cottier F, Last K, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis K, Nygård H, Voegedes D, Griffiths C, Johnsen G, Lorenzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69. https://doi.org/10.1098/rsbl.2008.0484

    Article  PubMed  Google Scholar 

  • Berge J, Johnsen G, Sørensen NI (2015a) Enabling technology for Arctic research. Pan European Networks: Science and Technology Magazine 15:199–201

    Google Scholar 

  • Berge J, Daase M, Renaud PE, Ambrose WG, Darnis G, Last KS, Leu E et al (2015b) Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr Biol 25:2555–2561

    Article  CAS  PubMed  Google Scholar 

  • Berge J, Renaud PE, Darnis G, Cottier F, Last K, Gabrielsen TM, Johnsen G et al (2015c) In the dark: a review of ecosystem processes during the Arctic polar night. Prog Oceanogr 139:258–271

    Article  Google Scholar 

  • Błachowiak-Samołyk K, Wiktor JM, Hegseth EN, Wold A, Falk-Petersen S, Kubiszyn AM (2015) Winter tales: the dark side of planktonic life. Polar Biol 38:23–36

    Article  Google Scholar 

  • Bluhm BA, Gradinger R (2008) Reginal variability in food availability for Arctic marine mammals. Ecol Appl 18:77–96

    Article  Google Scholar 

  • Bosence DWJ (1980) Sedimentary facies, production rates and facies models for recent coralline algal gravels. Geol J 15:91–111

    Article  Google Scholar 

  • Brown T, Hegseth EN, Belt S (2015) A biomarker-based investigation of the mid-winter ecosystem in Rijpfjorden, Svalbard. Polar Biol 38:37–50

    Article  Google Scholar 

  • Bunt JS, Lee CC (1972) Data on the composition and dark survival of four sea-ice microalgae. Limnol Oceanogr 17:458. https://doi.org/10.4319/lo.1972.17.3.0458

    Article  CAS  Google Scholar 

  • Burdett HL, Hennige SJ, Francis FTY, Kamenos NA (2012) The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot Mar 55:499–509

    Article  CAS  Google Scholar 

  • Cahoon LB (1999) The role of benthic microalgae in neritic ecosystems. Oceanogr Mar Biol Ann Rev 37:47–86

    Google Scholar 

  • Carlsen BP, Johnsen G, Berge J, Kuklinski P (2007) Biodiversity pattern of macro-epifauna on different parts of Laminaria digitata and Saccharina latissima collected during spring and summer 2004 in Kongsfjorden, Svalbard. Polar Biol 30:939–943

    Article  Google Scholar 

  • Cohen JH, Berge J, Moline MA, Sørensen AJ, Last K, Falk-Petersen S, Renaud PE, Leu ES, Grenvald J, Cottier F, Cronin H, Menze S, Norgren P, Varpe Ø, Daase M, Darnis G, Johnsen G, Davies WIL (2015) Is ambient light during the high arctic polar night sufficient to act as a visual cue for Zooplankton?. PLoS One 10(6):e0126247

    Google Scholar 

  • Druzhkov N, Druzhkova E, Kuznetsov L (2001) The sea-ice algal community of seasonal pack ice in the southwestern Kara Sea in late winter. Polar Biol 24:70–72. https://doi.org/10.1007/s003000000185

    Article  Google Scholar 

  • Druzhkova E, Oleinik A, Makarevich P (2017) Live autochthonous benthic diatoms on the lower depths of Arctic continental shelf. Preliminary results. Oceanologia 60:97–100. https://doi.org/10.1016/j.oceano.2017.07.001

    Article  Google Scholar 

  • Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour. and Laminaria solidungula J. Ag. (Laminariales: Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189

    Article  Google Scholar 

  • Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304

    Article  Google Scholar 

  • Dunton K (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7(6):183–189

    Google Scholar 

  • Dunton KH, Jodwalis CM (1988) Photosynthetic performance of Laminaria solidungula measured in situ in the Alaskan High Arctic. Mar Biol 98:277–285

    Article  Google Scholar 

  • Dunton KH, Schell DM (1986) Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic. Mar Ecol Prog Ser 31:57–66

    Article  Google Scholar 

  • Edvardsen B, Eikrem W, Shalchian-Tabrizi K, Riisberg I, Johnsen G, Naustvoll L, Throndsen J (2007) Verrucophora farcimen gen. et sp. nov. (Dictyochophyceae, Heterokonta)—a bloom‐forming ichthyotoxic flagellate from the Skagerrak, Norway. J Phycol 43(5):1054–1070

    Google Scholar 

  • Esteban R, Martínez B, Fernández-Marín B, Becerril JM, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in. Eur J Phycol 44(2):221–230

    Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Oxford

    Google Scholar 

  • Forbord S (2004) Annual variation in pigmentation in marine red, brown and green macroalgae. Cand Scient thesis, NTNU Trondheim, 105 pp

    Google Scholar 

  • Fredriksen S, Bartsch I, Wiencke C (2014) New additions to the benthic marine flora of Kongsfjorden, western Svalbard, and comparison between 1996/1998 and 2012/2013. Bot Mar 57. https://doi.org/10.1515/bot-2013-0119

  • Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Moy SR, Steneck RS, Wiktor JM, Hop H, Wiencke C (2019) Chapter 9: Biodiversity of Benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in Polar ecology, vol 2. Springer Nature, Cham, pp 331–371. https://doi.org/10.1007/978-3-319-46425-19

    Chapter  Google Scholar 

  • Freiwald A, Henrich R (1994) Reefal coralline algal build-ups within the Arctic circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963–984

    Article  Google Scholar 

  • Glud RN, Kühl M, Wenzhoefer F, Rysgaard S (2002) Benthic diatoms of a high Arctic fjord (Young Sound, NE Green-land): importance for ecosystem primary production. Mar Ecol Progr Ser 238:15–29

    Article  Google Scholar 

  • Glud RN, Woelfel J, Karsten U, Kühl M, Rysgaard S (2009) Benthic microalgal production in the Arctic: applied methods and status of the current database. Bot Mar 52:559–571. https://doi.org/10.1515/BOT.2009.074

    Article  CAS  Google Scholar 

  • Gomez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, daily carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Progr Ser 148:281–293

    Article  Google Scholar 

  • Gosselin M et al (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Res II 44:1623–1644

    Article  CAS  Google Scholar 

  • Goto N, Mitamura O, Terai H (2001) Biodegradation of photosynthetically produced extracellular organic carbon from intertidal benthic algae. J Exp Mar Biol Ecol 257:73–86. https://doi.org/10.1016/S0022-0981(00)00329-4

    Article  CAS  PubMed  Google Scholar 

  • Gradinger R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort seas during May/June 2002. Deep Sea Res II 56:1201–1212. https://doi.org/10.1016/j.dsr2.2008.10.016

    Article  CAS  Google Scholar 

  • Gradinger R, Ikävalko J (1998) Organism incorporation into newly forming Arctic Sea ice in the Greenland Sea. J Plankton Res 20:871–886. https://doi.org/10.1093/plankt/20.5.871

    Article  Google Scholar 

  • Gradinger RR, Kaufman MR, Bluhm BA (2009) Pivotal role of sea ice sediments in the seasonal development of near-shore Arctic fast ice biota. Mar Ecol Prog Ser 394:49–63

    Google Scholar 

  • Grzymski J, Johnsen G, Sakshaug E (1997) The significance of intracellular self-shading on the bio-optical properties of brown, red and green macroalgae. J Phycol 33:408–414

    Article  Google Scholar 

  • Hancke K, Lund-Hansen LC, Lamare ML, Pedersen SH, King MD, Andersen P, Sorrell BK (2018) Extreme low light requirement for algae growth underneath sea ice: a case study from station Nord, NE Greenland. J Geophys Res Oceans 123(2):985–1000

    Google Scholar 

  • Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar Biol 131:361–369

    Article  Google Scholar 

  • Hilstad K (2005) In situ tidsseriemålinger av lyshøstingsegenskaper og cellekjemi hos marine makroalgaer i Trondheimsfjorden. Cand scient thesis, NTNU, Trondheim, 113 pp

    Google Scholar 

  • Hooper RG (1984) Functional adaptations to the polar environment by the arctic kelp, Laminaria solidungula. Br Phycol J 19:194

    Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414

    Article  Google Scholar 

  • Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden, Svalbard. Polar Biol 39:2037–2061. https://doi.org/10.1007/s00300-016-2048-1

    Article  Google Scholar 

  • Horner RA, Alexander V (1972) Algal populations in arctic sea ice: an investigation of heterotrophy. Limnol Oceanogr 17:454–458

    Article  Google Scholar 

  • Horner R, Schrader GC (1982) Relative contribution of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35:485–503

    Article  Google Scholar 

  • Hsiao SIC (1992) Dynamics of ice algae and phytoplankton in Frobisher Bay. Polar Biol 12:645–651. https://doi.org/10.1007/BF00236987

    Article  Google Scholar 

  • Hurd CL, Harrison PJ, Bischof K, Lobban CS (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, Oxford. 551 pp

    Book  Google Scholar 

  • Irving AD, Connell SD, Elsdon TS (2004) Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J Exp Mar Biol Ecol 310:1–12

    Article  Google Scholar 

  • Isaksen K, Nordli Ø, Førland EJ, Łupikasza E, Eastwood S, Niedźwiedź T (2016) Recent warming on Spitsbergen – influence of atmospheric circulation and sea ice cover. J Geophys Res Atmos 121:11913–11931. https://doi.org/10.1002/2016JD025606

    Article  Google Scholar 

  • Iversen KR, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749. https://doi.org/10.1007/s00300-010-0929-2

    Article  Google Scholar 

  • Jeffrey SW, Vesk M (1976) Further evidence for a membrane-bound endosymbiont within the dinoflagellate Peridinium foliaecum. J Phycol 12:450–455

    Google Scholar 

  • Jeffrey SW, Wright SW, Zapata M (2011) Microalgal classes and their signature pigments, pp. 3-77. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. Cambridge University Press, Cambridge. ISBN: 9780511732263

    Google Scholar 

  • Johnsen G, Sakshaug E (2007) Bio-optical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for PAM and FRR fluorometry. J Phycol 43:1236–1251

    Article  CAS  Google Scholar 

  • Johnsen G, Samset O, Granskog L, Sakshaug E (1994) In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton: taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Mar Ecol Prog Ser 105:149–1157

    Google Scholar 

  • Johnsen G, Eikrem W, Dalløkken R, Legrand C, Aure J, Skjoldal HR (1999) Eco-physiology, bio-optics and toxicity of the ichthyotoxic prymnesiophyte Chrysochromulina leadbeateri. J Phycol 35:1465–1476

    Article  CAS  Google Scholar 

  • Johnsen G, Volent Z, Sakshaug E, Sigernes F, Pettersson LH (2009) Remote sensing in the Barents Sea. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, pp 139–166. ISBN 978–82–519-2461-0

    Google Scholar 

  • Johnsen G, Bricaud A, Nelson N, Prézelin BB, Bidigare RR (2011) Chapter 13: In vivo bio-optical properties of phytoplankton pigments. In: Roy S, Llewellyn C, Egeland E, Johnsen G (eds) Phytoplankton pigments: updates on characterization, chemotaxonomy and Applications in Oceanography. Cambridge University Press, Cambridge, pp 496–537. ISBN: 978110700066–7

    Chapter  Google Scholar 

  • Johnsen G, Ludvigsen M, Sørensen A, Aas LM (2016) The use of underwater hyperspectral imaging deployed on remotely operated vehicle – methods and applications. IFAC PapersOnLine 49:476–481

    Article  Google Scholar 

  • Johnsen G, Norli M, Moline M, Robbins I, Quillfeldt CV, Sørensen K, Cottier F, Berge J (2018) The advective origin of an under-ice spring bloom in the Arctic Ocean using multiple observational platforms. Polar Biol 41:1197–1216. https://doi.org/10.1007/s00300-018-2278-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Jørgensbye HIØ, Halfar J (2017) Overview of coralline red algal crusts and rhodolith beds (Corallines, Rhodophyta) and their possible ecological importance in Greenland. Polar Biol 40:517–531. https://doi.org/10.1007/s00300-016-1975-1

    Article  Google Scholar 

  • Kauko HM, Taskjelle T, Pavlov AK, Mundy CJ, Assmy P, Duarte P, Fernández Méndez M, Olsen LM, Hudson SR, Johnsen G, Granskog MA (2017) Windows in Arctic Sea ice: light transmission and the role of ice algae in a refrozen lead. J Geophys Res 122:1486–1505. https://doi.org/10.1002/2016JG003626

    Article  Google Scholar 

  • Kauko HM, Olsen LM, Duarte P, Peeken I, Granskog M, Johnsen G, Fenandez-Méndez M, Pavlov A, Mundy CJ, Assmy P (2018) Algal colonization of young Arctic sea ice in spring. Front Marine Sci, Marine Syst Ecol. https://doi.org/10.3389/fmars.2018.00199Olsen

  • Kleiven W, Johnsen G, Ardelan MV (2019) Sea surface micro layer and elemental composition in phaeo-, chloro- and rhodophytes in winter and spring. J Phycol 55:762. https://doi.org/10.1111/jpy.12851

    Article  CAS  PubMed  Google Scholar 

  • Kruss A, Tegowski J, Tatarek A, Wiktor J, Blondel P (2017) Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen) using acoustic imaging. Polish Pol Res 38:205–229. https://doi.org/10.1515/popore-2017-0009

    Article  Google Scholar 

  • Kvernvik AC, Hoppe CJM, Lawrens E, Prazil O, Greenacre M, Wiktor JM, Leu E (2018) Fast reactivation of photosynthesis in arctic phytoplankton during the polar night. J Phycol 54:461. https://doi.org/10.1111/jpy.12750

    Article  CAS  PubMed  Google Scholar 

  • Lacour T, Morin PI, Sciandra T, Donaher N, Campbell DA, Ferland J, Babin M (2019) Decoupling light harvesting, electron transport and carbon fixation during prolonged darkness supports rapid recovery upon re-illumination in the Arctic diatom Chaetoceros neogracilis. Polar Biol. https://doi.org/10.1007/s00300-019-02507-2

  • Last KM, Hobbs L, Berge J, Brierley AS, Cottier F (2016) Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr Biol 26:244–251

    Article  CAS  PubMed  Google Scholar 

  • Lavoie M, Waller JC, Kiene RP, Levasseur M (2018) Polar marine diatoms likely take up a small fraction of dissolved dimethylsulfoniopropionate relative to bacteria in oligotrophic environments. Aquat Microb Ecol 81:213–218. https://doi.org/10.3354/ame01871

    Article  Google Scholar 

  • Leu E, Søreide JE, Hessen DO, Falk-Petersen S, Berge J (2011) Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: timing, quantity, and quality. Progr Oceanogr 90(1–4):18–32. https://doi.org/10.1016/j.pocean.2011.02.004

    Article  Google Scholar 

  • Leu E, Mundy CJ, Assmy P, Campbell K, Gabrielsen TM, Gosselin M, Juul-Pedersen T, Gradinger R (2015) Arctic spring awakening – steering principles behind the phenology of vernal ice algal blooms. Progr Oceanogr 139:151–170

    Article  Google Scholar 

  • Ludvigsen M, Berge J, Geoffroy M, Cohen JH, De La Torre PR, Nornes SM, Singh H, Sørensen AJ, Daase M, Johnsen G (2018) Use of an Autonomous Surface Vehicle reveal new zooplankton behavioral patterns and susceptibility to light pollution during the polar night. Sci Adv 4(1):eaap9887. https://doi.org/10.1126/sciadv.aap9887

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund L, Lydon A, Johnsen G, Gabrielsen TM, Moline MA, Bakken T (2019) The kelp Saccharina nigripes is abundant in Svalbard, in prep

    Google Scholar 

  • Lüning K (1990) Seaweeds: their environment, biogeography, and ecophysiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Lüning K, Dring M (1979) Continuous underwater light measurements near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol Mar Res 32:403–424

    Google Scholar 

  • Lüning K, tom Dieck I (1989) Environmental triggers in algal seasonality. Bot Mar 32:389–397

    Article  Google Scholar 

  • Manes SS, Gradinger R (2009) Small scale vertical gradients of Arctic ice algal photophysiological properties. Photosynth Res 102:53–66

    Article  CAS  PubMed  Google Scholar 

  • Marquardt M et al (2016) Strong seasonality of marine microbial eukaryotes in a high-Arctic Fjord (Isfjorden, in West Spitsbergen, Norway). Appl Envir Microbiol 82:1868–1880

    Article  Google Scholar 

  • Martone PT, Alyono M, Stites S (2010) Bleaching of an intertidal coralline alga: untangling the effects of light, temperature and desiccation. Mar Ecol Prog Ser 416:57–67

    Article  Google Scholar 

  • McCoy SJ, Kamenos NA (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24. https://doi.org/10.1111/jpy.12262

    Article  PubMed  PubMed Central  Google Scholar 

  • McKie-Krisberg ZM, Sanders RW (2014) Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans. ISME 8:1953–1961

    Article  CAS  Google Scholar 

  • McMinn A, Martin A (2013) Dark survival in a warming world. Proc R Soc B 280:20122909. https://doi.org/10.1098/rspb.2012.2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26

    Article  CAS  Google Scholar 

  • Niemi A, Michel C, Hille K, Poulin M (2011) Protist assemblages in winter sea ice: setting the stage for the spring ice algal bloom. Polar Biol 34:1803–1817

    Article  Google Scholar 

  • Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM (2009) An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum. PLoS One 4(11):e7743. https://doi.org/10.1371/journal.pone.0007743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nymark M, Valle KC, Winge P, Hancke K, Andresen K, Johnsen G, Bones A, Brembu T (2013) Molecular and photosynthetic responses to prolonged darkness and subsequent acclimation to re-illumination in the diatom Phaeodactylum tricornutum. PlosOne 8(3):e58722

    Article  CAS  Google Scholar 

  • Olsen LM, Öztürk M, Sakshaug E, Johnsen G (2006) Photosynthesis-induced phosphate precipitation in seawater: ecological implications for phytoplankton. Mar Ecol Prog Ser 319:103–110

    Article  CAS  Google Scholar 

  • Olsen LM, Laney SR, Duarte P et al (2017) The seeding of ice algal blooms in Arctic pack ice: the multiyear ice seed repository hypothesis. J Geophys Res Biogeosci 122:1529. https://doi.org/10.1002/2016JG003668

    Article  Google Scholar 

  • Palmisano AC, Sullivan CW (1983) Physiology of sea ice diatoms. II. Dark survival of three polar diatoms. Can J Microbiol 29:157–160

    Article  Google Scholar 

  • Renaud P, Løkken T, Jørgensen L, Berge J, Johnson B (2015) Macroalgal detritus and food-web subsidies along an Arctic fjord depth-gradient. Front Marine Sci 2:1–15. https://doi.org/10.3389/fmars.2015.00031

    Article  Google Scholar 

  • Riedel A, Michel C, Gosselin M, LeBlanch B (2008) Winter-spring dynamics of sea-ice carbon cycling in the coastal Arctic Ocean. J Mar Syst 74:918–932. https://doi.org/10.1016/j.jmarsys.2008.01.003

    Article  Google Scholar 

  • Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, Cambridge

    Google Scholar 

  • Rózanska M, Poulin M, Gosselin M (2008) Protist entrapment in newly formed sea ice in the coastal Arctic Ocean. J Mar Syst 74:887–901

    Article  Google Scholar 

  • Sakshaug E (2004) Primary and secondary production in the Arctic Seas. In: Stein R, RW MD (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18912-8_3

    Chapter  Google Scholar 

  • Sakshaug E, Johnsen G, Kovacs K (eds) (2009) Ecosystem Barents Sea. Tapir Academic Press, Trondheim, 587 pp. ISBN 978–82–519-2461-0

    Google Scholar 

  • Schaub I, Wagner H, Graeve M, Karsten U (2017) Effects of prolonged darkness and temperature on the lipid metabolism in the benthic diatom Navicula perminuta from the Arctic Adventfjorden, Svalbard. Polar Biol 40:1425–1439. https://doi.org/10.1007/s00300-016-2067-y

    Article  Google Scholar 

  • Scheschonk L, Becker S, Hehemann J-H, Diehl N, Karsten U, Bischof K (2019) Arctic kelp eco-physiology during the polar night in the face of global warming: a crucial role of laminarin. Mar Ecol Prog Ser 611:59–74. https://doi.org/10.3354/meps12860

    Article  CAS  Google Scholar 

  • Scholz B, Einarsson H (2015) Microphytobenthic community composition of two sub-Arctic intertidal flats in Huna Bay (Northern Iceland). Eur J Phycol 50:182–206. https://doi.org/10.1080/09670262.2015.1024286

    Article  Google Scholar 

  • Seuthe L, Iversen KR, Narcy F (2011) Microbial processes in a high–latitude fjord (Kongsfjorden, Svalbard): ciliates and dinoflagellates. Polar Biol 34:751–766. https://doi.org/10.1007/s00300-010-0930-9

    Article  Google Scholar 

  • Shuntanova N, Nikishina D, Ivanov M, Berge J, Renaud PE, Ivanova T, Granovitch A (2018) The longer the better: the effect of substrate on sessile biota in Arctic kelp forest. Polar Biol 41:993. https://doi.org/10.1007/s00300-018-2263-z

    Article  Google Scholar 

  • Smola ZT, Tatarek A, Wiktor JM, Jr Wiktor JMW, Kubiszyn A, Weslawski JM (2015) Primary producers and production in Hornsund and Kongsfjorden – comparison of two fjord systems. Polish Polar Res 38:351–373

    Article  Google Scholar 

  • Stoecker DK, Lavrentyev PJ (2018) Mixotrophic plankton in the polar seas: a Pan-Arctic review. Front Mar Sci 5:292. https://doi.org/10.3389/fmars.2018.00292

    Article  Google Scholar 

  • Syvertsen EE (1991) Ice algae in the Barents Sea: types of assemblages, origin, fate and role in the ice-edge phytoplankton bloom. Polar Res 10:277–288

    Article  Google Scholar 

  • Vader A, Marquardt M, Meshram AR, Gabrielsen TM (2015) Key Arctic phototrophs are widespread in the polar night. Polar Biol 38:13–21

    Article  Google Scholar 

  • Valle KC (2005) Detection of monthly variation in marine red, brown and green macroalgae by means of in situ video technique, epifluorescence microscopy and numerical digital image analysis. Cand Scient thesis, NTNU Trondheim, 168 pp

    Google Scholar 

  • Valle KC, Nymark M, Aamot I, Hancke K, Winge P, Andresen K, Johnsen G, Brembu T, Bones A (2014) System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum. PlosOne 9:e114211. https://doi.org/10.1371/journal.pone.0114211

    Article  CAS  Google Scholar 

  • Veuger B, van Oevelen D (2011) Long-term pigment dynamics and diatom survival in dark sediment. Limnol Oceanogr 56:1065–1074

    Article  CAS  Google Scholar 

  • Volent Z, Johnsen G, Sigernes F (2007) Kelp forest mapping by use of airborne hyperspectral imager. J App Remote Sens 1:011503. https://doi.org/10.1117/1.2822611

    Article  Google Scholar 

  • Werner I, Ikävalko J, Schünemann H (2007) Sea-ice algae in Arctic pack ice during late winter. Polar Biol 30:1493–1504. https://doi.org/10.1007/s00300-007-0310

    Article  Google Scholar 

  • Weslawski JM, Wiktor J, Zajaczkowski M, Swerpel S (1993) Intertidal zone of Svalbard. Polar Biol 13:73–79

    Article  Google Scholar 

  • Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity-observations and predictions. Mar Biodivers 41:71–85

    Article  Google Scholar 

  • Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitsbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33. https://doi.org/10.1016/j.jembe.2005.08.00

    Article  Google Scholar 

  • Wiencke C (1988) Notes on the development of some benthic marine macroalgae of King George Island (Antarctica). Ser Cient INACH 37:23–47

    Google Scholar 

  • Wiencke C (1990) Seasonality of brown macroalgae from Antarctica – a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600

    Article  Google Scholar 

  • Wiencke C (ed) (2011) Biology of polar benthic algae. Marine and freshwater botany. Walter de Gruyter GmbH & Co. KG, New York, p 342

    Google Scholar 

  • Wiencke C, Clayton MN (2002) Antarctic seaweeds. In: Wägele JW, Sieg J (eds) Synopses of the Antarctic Benthos, vol 9. Gantner, Ruggell

    Google Scholar 

  • Wiencke C, Clayton MN, Gomez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2007) Life strategy, ecophysiology and ecology of seaweed in polar waters. Rev Environ Biotechnol 6:95–126. https://doi.org/10.1007/s11157-006-9106-z

    Article  Google Scholar 

  • Wilce RT (1994) The Arctic subtidal as habitat for macrophytes. In: Lobban CS, Harrison PJ (eds) Seaweed ecology and physiology. Cambridge University Press, Cambridge, pp 89–92

    Google Scholar 

  • Woelfel J, Schumann R, Peine F, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253. https://doi.org/10.1007/s00300-010-0813-0

    Article  Google Scholar 

  • Womersley HBS (1991) Biogeography of Australasian marine macroalgae. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman Cheshire, Melbourne, pp 367–381

    Google Scholar 

  • Zhang Q, Gradinger R, Spindler M (1998) Dark survival of marine microalgae in the high Arctic (Greenland Sea). Polarforschung 65:111–116

    Google Scholar 

  • Zolich A (2018) System integration and communication in autonomous unmanned vehicles in marine environments. PhD thesis at Norwegian University of Science and Technology (NTNU), ISBN 978-82-326-3507-8, Trondheim, Norway, 276 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geir Johnsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnsen, G., Leu, E., Gradinger, R. (2020). Marine Micro- and Macroalgae in the Polar Night. In: Berge, J., Johnsen, G., Cohen, J. (eds) POLAR NIGHT Marine Ecology. Advances in Polar Ecology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-33208-2_4

Download citation

Publish with us

Policies and ethics