Skip to main content

Abstract

This chapter highlights the multiscale concentrated solar power thrust, which focused on developing new low-cost manufacturable technologies for both high- and moderate-temperature thermal cycles. In the high-temperature range, the focus was on the supercritical carbon dioxide (s-CO2) Brayton cycle. Research involved developing low-cost heliostats coupled with novel bladed receivers and a novel CO2 test loop. A key focus was developing a functional testbed to evaluate and optimize the Brayton cycle as a cost-shared effort with the Indian Institute of Science. The project also investigated developing a novel helical receiver to heat the CO2. Extensive computational modeling of the thermal flow and gradients was conducted to develop the novel CO2 cycle. The program also pursued developing low-cost mirrors, absorbers, and troughs for Rankine cycle solar thermal parabolic trough technology. A new small-scale, positive-displacement organic Rankine cycle expander was developed and tested. Solution-based approaches were considered that promise low-cost manufacturing. Coupled with the heat-collection work were investigations of thermal storage approaches. Specifically, new molten salts were developed capable of much higher-temperature performance with improved thermal conductivity, and a new system was developed for low-temperature Rankine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.K. Ho, M. Carlson, P. Garg, P. Kumar, Technoeconomic analysis of alternative solarized s-CO2 Brayton cycle configurations. J. Sol. Energy Eng. Trans. ASME 138(5), 051008 (2016)

    Article  Google Scholar 

  2. C.S. Turchi, Z.W. Ma, T.W. Neises, M.J. Wagner, Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. J. Sol. Energy Eng. Trans. ASME 135(4), 041007 (2013)

    Article  Google Scholar 

  3. B.D. Iverson, T.M. Conboy, J.J. Pasch, A.M. Kruizenga, Supercritical CO2 Brayton cycles for solar-thermal energy. Appl. Energy 111, 957–970 (2013)

    Article  Google Scholar 

  4. S.A. Wright, P.S. Pickard, R. Fuller, R.F. Radel, M.E. Vernon, Supercritical CO2 Brayton cycle power generation development program and initial test results. ASME Power Conference, 573–583 (2009). 2009

    Google Scholar 

  5. C.K. Ho, B.D. Iverson, Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 29, 835–846 (2014)

    Article  Google Scholar 

  6. J.D. Ortega, A. Castellanos, S. Afrin, V. Kumar, C.K. Ho, Computational modeling of a high temperature direct tubular receiver design for supercritical CO2 Brayton cycle. Presented at ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, IL, August 3–7, 2014 (2014)

    Google Scholar 

  7. J.M. Christian, J.D. Ortega, C.K. Ho, Novel tubular receiver panel configurations for increased efficiency of high-temperature solar receivers, in ASME Proceedings of the 9th International Conference on Energy Sustainability, San Diego, CA, June 28–July 2, 2015 (2015)

    Google Scholar 

  8. J.M. Christian, J.D. Ortega, C.K. Ho, J. Yellowhair, Design and modeling of light-trapping tubular receiver panels, in Proceedings of the ASME 2016 Power and Energy Conference, PowerEnergy2016-59158, Charlotte, North Carolina, June 26–30, 2016 (2016)

    Google Scholar 

  9. C.K. Ho, J.M. Christian, J.D. Ortega, J. Yellowhair, M.J. Mosquera, C.E. Andraka, Reduction of radiative heat losses for solar thermal receivers, in Proceedings of the SPIE Optics+Photonics Solar Energy+Technology High and Low Concentrator Systems for Solar Energy Applications IX, San Diego, August 17–21, 2014 (2014)

    Google Scholar 

  10. J.D. Ortega, J.M. Christian, C.K. Ho, Design and testing of a novel bladed receiver, in Proceedings of the ASME 11th International Conference on Energy Sustainability (2017)

    Google Scholar 

  11. J. Ortega, S. Khivsara, J. Christian, C. Ho, P. Dutta, Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation. Appl. Therm. Eng. 109(B), 979–987 (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.031

    Article  Google Scholar 

  12. J. Ortega, S. Khivsara, J. Christian, C. Ho, J. Yellowhair, Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Optical and thermal-fluid evaluation. Appl. Therm. Eng. 109(B), 970–978 (2016). https://doi.org/10.1016/j.applthermaleng.2016.05.178

    Article  Google Scholar 

  13. P. Garg, P. Kumar, K. Srinivasan, Supercritical carbon dioxide Brayton cycle for concentrated solar power. J. Supercrit. Fluids 76, 54–60 (2013)

    Article  Google Scholar 

  14. E.G. Feher, The supercritical thermodynamic power cycle, in Proceedings of the Intersociety Energy Conversion Engineering Conference, Douglas Paper No. 4348 (1967)

    Google Scholar 

  15. E.G. Feher, Investigation of supercritical cycle. AstroPower laboratory, Missile & Space Systems Division, Technical Report AFAPL-TR-68-100, AD843063 (1968)

    Google Scholar 

  16. V. Dostal, P. Hejzlar, M.J. Driscoll, N.E. Todreas, A supercritical CO2 Brayton cycle for advanced reactor applications. Trans. Am. Nucl. Soc. 85, 110–111 (2001)

    Google Scholar 

  17. V. Dostal, A supercritical carbon dioxide cycle for next generation nuclear reactors. Ph.D. thesis, MIT-ANP-TR-100 (2004)

    Google Scholar 

  18. J.D. Ortega, J.M. Christian, J.E. Yellowhair, C.K. Ho, Coupled Optical-Thermal-Fluid Modeling of Novel Light-Trapping Tubular Panels for Concentrating Solar Power Receivers, in Proceedings of the 9th International Conference on Energy Sustainability (ES2015), San Diego, CA, June 28–July 2, 2015 (2015)

    Google Scholar 

  19. A. Dan, H.C. Barshilia, K. Chattopadhyay, B. Basu, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review. Renew. Sust. Energ. Rev. 79, 1050–1077 (2017)

    Article  Google Scholar 

  20. C.E. Kennedy, Review of Mid- to High-Temperature Solar Selective Absorber Materials. NREL/TP-520-31267, National Renewable Energy Laboratory, Golden, Colorado (2002)

    Google Scholar 

  21. A. Dan, K. Chattopadhyay, H.C. Barshilia, B. Basu, Shifting of the absorption edge in TiB2/TiB(N)/Si3N4 solar selective coating for enhanced photothermal conversion. Sol. Energy 173, 192–200 (2018)

    Article  Google Scholar 

  22. A. Dan, A. Biswas, P. Sarkar, S. Kashyap, K. Chattopadhyay, H.C. Barshilia, B. Basu, Enhancing spectrally selective response of W/WAlN/WAlON/Al2O3–based nanostructured multilayer absorber coating through graded optical constants. Sol. Energy Mater. Sol. Cells 176, 157–166 (2018)

    Article  Google Scholar 

  23. A. Dan, K. Chattopadhyay, H.C. Barshilia, B. Basu, Angular solar absorptance and thermal stability of W/WAlN/WAlON/Al2O3-based solar selective absorber coating. Appl. Therm. Eng. 109, 997–1002 (2016)

    Article  Google Scholar 

  24. A. Dan, K. Chattopadhyay, H.C. Barshilia, B. Basu, Thermal stability of WAlN/WAlON/Al2O3-based solar selective absorber coating. MRS Advances 1(41), 2807–2813 (2016)

    Article  Google Scholar 

  25. A. Dan, B. Basu, T. Echániz, I.G. de Arrieta, G.A. López, H.C. Barshilia, Effects of environmental and operational variability on the spectrally selective properties of W/WAlN/WAlON/Al2O3-based solar absorber coating. Sol. Energy Mater. Sol. Cells 185, 342–350 (2018)

    Article  Google Scholar 

  26. N. Selvakumar, H.C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications. Sol. Energy Mater. Sol. Cells 98, 1–23 (2012)

    Article  Google Scholar 

  27. D.L. McDowell, S.R. Kalidindi, The materials innovation ecosystem: A key enabler for the materials genome initiative. MRS Bull. 41, 326–337 (2016)

    Article  Google Scholar 

  28. Q. Yan, J. Yu, S.K. Suram, L. Zhou, A. Shinde, P.F. Newhouse, W. Chen, G. Li, K.A. Persson, J.M. Gregoire, Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment. Proc. Natl. Acad. Sci. 114, 3040–3043 (2017)

    Article  Google Scholar 

  29. M.L. Green, C.L. Choi, J.R. Hattrick-Simpers, A.M. Joshi, I. Takeuchi, S.C. Barron, E. Campo, T. Chiang, S. Empedocles, J.M. Gregoire, Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 4, 011105 (2017)

    Article  Google Scholar 

  30. A. Yosipof, O.E. Nahum, A.Y. Anderson, H.N. Barad, A. Zaban, H. Senderowitz, Data mining and machine learning tools for combinatorial material science of all-oxide photovoltaic cells. Mol. Inform. 34, 367–379 (2015)

    Article  Google Scholar 

  31. P. Dutta, High temperature solar receiver and thermal storage systems. Appl. Thermal Eng. 124, 624–632 (2017)

    Article  Google Scholar 

  32. O. Srikanth, S. Khivsara, R. Aswathi, C.D. Madhusoodana, Numerical and experimental evaluation of ceramic honeycombs for thermal energy storage. Transact. Indian Cer. Soc. 76(2), 1–6 (2017)

    Google Scholar 

  33. P. Garg, P. Kumar, P. Dutta, T. Conboy, C. Ho, Design of an experimental test facility for supercritical CO2 Brayton cycle. Presented at ASME 8th International Conference on Energy Sustainability, June 30–July 2, 2014, Boston, MA (2014)

    Google Scholar 

  34. O.P. Agnihotri, B.K. Gupta, Solar Selective Surfaces, 1st edn. (Wiley-Interscience Publication, New York, 1981)

    Google Scholar 

  35. C.E. Kennedy, Review of mid- to high-temperature solar selective absorber materials. NREL tech report, NREL/TP-520-31267 (2002)

    Google Scholar 

  36. K.R. Newby, Functional chromium plating. Met. Finish. 97, 223–247 (1999)

    Article  Google Scholar 

  37. V. Moise, R. Cloots, A. Rulmont, Study of the electrochemical synthesis of selective black coatings absorbing solar energy. Int. J. Inorg. Mater. 3, 1323–1329 (2001)

    Article  Google Scholar 

  38. K.D. Lee, Preparation and characterization of black chrome solar selective coatings. J. Korean Phys. Soc. 51, 135–144 (2007)

    Article  Google Scholar 

  39. Z. Zeng, A. Liang, J. Zhang, A review of recent patents on trivalent chromium plating. Recent Patents Mater. Sci. 2, 50–57 (2009)

    Article  Google Scholar 

  40. M. Shiva Prasad, K. Chandra Sekhar Reddy, S. Sakthivel, Development of cost efficient solar receiver tube with a novel tandem absorber system. Appl. Therm. Eng. 109, 988–996 (2016)

    Article  Google Scholar 

  41. S. Sakthivel, M. Shiva Prasad, B. Mallikarjun, S.V. Joshi, An improved performance of nanocomposite oxide selective absorber coating with excellent optical and thermal resistant properties and method of manufacturing the same. Indian Patent Application No.1111/DEL/2015 (2015)

    Google Scholar 

  42. A. Srinivasa Rao, S. Sakthivel, A highly thermally stable Mn–Cu–Fe composite oxide based solar selective absorber layer with low thermal loss at high temperature. J. Alloys Compd. 644, 906–915 (2015)

    Article  Google Scholar 

  43. F.G.F. Qin, X. Yang, Z. Ding, Y. Zuo, Y. Shao, R. Jiang, Thermocline stability criterions in single-tanks of molten salt thermal energy storage. Appl. Energy 97, 816–821 (2012)

    Article  Google Scholar 

  44. Z. Yang, Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Sol. Energy 84, 974–985 (2010)

    Article  Google Scholar 

  45. T. Bauer, N. Breidenbach, M. Eck, Overview of molten salt storage systems and material development for solar thermal power plants. World Renewable Energy Forum 2012, 1–8 (2012)

    Google Scholar 

  46. K.V. Manu, P. Anand, U.K. Chetia, S. Basu, Effects of instabilities and coherent structures on the performance of a thermocline based thermal energy storage. Appl. Therm. Eng. 87, 768–778 (2015)

    Article  Google Scholar 

  47. S. Advaith, K.V. Manu, A. Tinaikar, U.K. Chetia, S. Basu, Interaction of vortex ring with a stratified finite thickness interface. Phys. Fluids 29(9), 093602 (2017)

    Article  Google Scholar 

  48. S. Advaith, A. Punia, U. Kumar Chetia, N. Dani, K. Chattopadhyay, S. Basu, Stability Analysis of an Oil Based Thermocline Energy Storage System, in Proceedings of the International Conference on Sustainable Energy and Environmental Challenges (SEEC) (2018)

    Google Scholar 

  49. A. Tinaikar, S. Advaith, U.K. Chetia, K.V. Manu, S. Basu, Spatio-temporal disruption of thermocline by successive laminar vortex pairs in a single tank thermal energy storage. Appl. Therm. Eng. 109, 924–935 (2016)

    Article  Google Scholar 

  50. P. Deepu, S. Dawande, S. Basu, Instabilities in a fluid overlying an inclined anisotropic and inhomogeneous porous layer. J. Fluid Mech. 762, R2 (2015)

    Article  MathSciNet  Google Scholar 

  51. S. Hatte et al., Short and long-term sensitivity of lab-scale thermocline based thermal storage to flow disturbances. Appl. Therm. Eng. 109, 936–948 (2016)

    Article  Google Scholar 

  52. S.V. Garimella, Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf. Eng. 34(10), 787–800 (2013)

    Article  Google Scholar 

  53. P.K. Madathil et al., Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications. Appl. Therm. Eng. 109, 901–905 (2016)

    Article  Google Scholar 

  54. K.M. Pramod, P.V.C. Rao, N.V. Choudary, K. Ramesh, Novel methodology to prepare homogenous ternary molten salts for concentrated solar power applications and their thermo-physical characterization. Appl. Therm. Eng. 109, 906–910 (2016)

    Article  Google Scholar 

  55. K. Ramesh, K.M. Pramod, P.V.C. Rao, N.V. Choudary, A Process for Preparation of Homogenous Mixture for Thermal Storage and Heat Transfer Applications. Google Patents, 2017

    Google Scholar 

  56. S.M. Flueckiger, Z. Yang, S.V. Garimella, Review of molten-salt thermocline tank modeling for solar thermal energy storage. Heat Transf. Eng. 34, 787–800 (2013)

    Article  Google Scholar 

  57. S.M. Flueckiger, B.D. Iverson, S.V. Garimella, J.E. Pacheco, System-level simulation of a solar power tower plant with thermocline thermal energy storage. Appl. Energy 113, 86–96 (2014)

    Article  Google Scholar 

  58. S.M. Flueckiger, B.D. Iverson, S.V. Garimella, Economic optimization of a concentrating solar power plant with molten-salt thermocline storage. J. Sol. Energy Eng. 136(1), 011015 (2013)

    Article  Google Scholar 

  59. S.M. Flueckiger, S.V. Garimella, Latent heat augmentation of thermocline energy storage for concentrating solar power – a system-level assessment. Appl. Energy 116, 278–287 (2014)

    Article  Google Scholar 

  60. C. Mira-Hernández, S.M. Flueckiger, S.V. Garimella, Comparative analysis of single- and dual-media thermocline tanks for thermal energy storage in concentrating solar power plants. J. Sol. Energy Eng. 137(3), 031012 (2015)

    Article  Google Scholar 

  61. M. Prabhakar, S. Singh, S.K. Saha, Heat transfer characterization of latent heat thermal energy storage system using fins in solar thermal power plant. Presented at Third Southern African Solar Energy conference, SASEC 2015 11−13, 2015 (2015)

    Google Scholar 

  62. K. Bhagat, M. Prabhakar, S.K. Saha, Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. J. Energy Storage 19, 135–144 (2018). https://doi.org/10.1016/j.est.2018.06.014

    Article  Google Scholar 

  63. A. Kumar, S.K. Saha, Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix. Appl. Therm. Eng. 109(B), 911–923 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.161

    Article  Google Scholar 

  64. A. Kumar, S.K. Saha, Latent heat thermal storage with variable porosity metal matrix: A numerical study. Renew. Energy 125, 962–973 (2018). https://doi.org/10.1016/j.renene.2018.03.030

    Article  Google Scholar 

  65. A. Kumar, S.K. Saha, Second law analysis of latent heat thermal storage for ORC-based solar thermal power plant. Presented at International Conference on Advances in Energy Research, December 15–17, 2015, IIT Bombay (2015)

    Google Scholar 

  66. S. Halder, S. Singh, S.K. Saha, Numerical simulation of latent heat thermal storage using metal matrix and foam for solar thermal power plant. Presented at third southern African solar energy conference, SASEC 2015, May 11−13, 2015 (2015)

    Google Scholar 

  67. R. Shah, S.K. Saha, Thermal performance of multitube latent heat thermal storage using metal matrix for solar applications: A numerical study. Heat Transf. Res. 50, 545 (2018). https://doi.org/10.1615/HeatTransRes.2018024568

    Article  Google Scholar 

  68. K. Bhagat, S.K. Saha, Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant. Renew. Energy 95, 323–336 (2016). https://doi.org/10.1016/j.renene.2016.04.018

    Article  Google Scholar 

  69. A. Kumar, P. Shahi, S.K. Saha, Experimental study of latent heat thermal energy storage system for medium temperature solar applications. In Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering (MCM’18), Madrid, Spain, Paper No. HTFF 152, August 16–18, 2018 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ginley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ginley, D. et al. (2020). Multiscale Concentrated Solar Power. In: Ginley, D., Chattopadhyay, K. (eds) Solar Energy Research Institute for India and the United States (SERIIUS). Lecture Notes in Energy, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-33184-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33184-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33183-2

  • Online ISBN: 978-3-030-33184-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics