Skip to main content

Mass Production of Predatory Mites and Their Efficacy for Controlling Pests

  • Chapter
  • First Online:
Cottage Industry of Biocontrol Agents and Their Applications

Abstract

Biological control has long been recognized as an effective and an environmentally safe pest management method. Several species of Mesostigmata and Prostigmata predatory mites are effective biological control agents against several phytophagous mites and insects also nematodes. Based on predator feeding habits, biological characteristics of it can be affected by nutritional value of the prey. Acari predators are mass reared on a wide scale of natural food sources like mites belonging to families Eriophyidae, Tetranychidae, Tarsonemidae, Tenuipalpidae and Tydeidae, also insects like whiteflies, mealybugs and thrips, or on factitious food like storage mites and insect eggs. Hence, a cost for predator’s mass production is a fundamental precondition; this chapter discussed the rearing method on various diets referring to the advantages, the cost and benefit as well as the abundance of these predators and the possibility of their application and success, especially in Egypt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van der Geest LPS (1985) Pathogens of spider mites. In: Helle W, Sabelis MW (eds) Spider mites. Their biology, natural enemies & control. World Crop Pests 1B:247–258

    Google Scholar 

  2. Gerson U (2008) The Tenuipalpidae: an under-explored family of plant feeding mites. Syst Appl Acarol 2:83–101

    Google Scholar 

  3. Abou-Awad BA, El-Sawaf BM, Abdel-Khalek AA (2000) Impact of two eriophyoid fig mites, Aceria ficus and Rhyncaphytoptus ficifoliae, as prey on postembryonic development and oviposition rate of the predacious mite Amblyseius swirskii. Acarologia 4:367–371

    Google Scholar 

  4. Momen FM, Abdel-Khalek A (2008) Effect of the tomato rust mite Aculops lycopersici (Acari: Eriophyidae) on the development and reproduction of three predatory phytoseiid mites. Int J Trop Insect Sci 1:53–57

    Article  Google Scholar 

  5. Oldfield GN, Proeseler G (1996) Eriophyoid mites as vectors of plant pathogens. In: Eriophyoid mites their biology, natural enemies and control. World Crop Pests 6:259–275

    Google Scholar 

  6. van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricides resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40:563–572

    Article  CAS  Google Scholar 

  7. Uddin N, Alam Z, Miah UR, Mian HI, Mustarin EK (2015) Toxicity of pesticides of Tetranychus urticae Koch (Acari: Tetranychidae) and their side effects on Neoseiulus californicus (Acari: Phytoseiidae). Int J Acarol 41:688–693

    Article  Google Scholar 

  8. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biol Control 57:1–20

    Google Scholar 

  9. Bigler F (1989) Quality assessment and control in entomophagous insects used for biological control. J Appl Entomol 108:390–400

    Article  Google Scholar 

  10. Krantz GW (1978) A manual of acarology, 2nd edn. Oregon State University Bookstores, Corvallis, p 509

    Google Scholar 

  11. Halliday RB (2006) New taxa of mites associated with Australian termites (Acari: Mesostigmata). Int J Acarol 32:27–38

    Article  Google Scholar 

  12. Moreira GF, de Morais MR, Busoli AC, de Mraes GJ (2015) Life cycle of Cosmolaelaps jaboticabalensis on Frankliniella occidentalis and two factitious food sources. Exp Appl Acarol 65:219–226

    Article  Google Scholar 

  13. McMurtry JA, de moraes JG, Sourassou FN (2013) Revision of the lifestyles of phytosiid mites and implication for biological control strategies. Syst Appl Acarol 4:297–320

    Google Scholar 

  14. El-Sawi SA, Momen FM (2006) Agistemus exsertus Gonzalez (Acari: Stigmaeidae) as a predator of two scale insects of the family Diaspididae (Homoptera: Diaspididae). Arch Phytopathol Plant Prot 39:421–427

    Article  Google Scholar 

  15. Momen FM (2012) Influence of life diet on the biology and demographic parameters of Agistemus olive Romeih, a specific predator of eriophyid mites (Acari: Stigmaeidae and Eriophyidae). Trop Life Sci Res 23:25–34

    Google Scholar 

  16. Lindquist EE, Kantz GW, Walter DE (2009) Order Mesostigmata. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 124–232

    Google Scholar 

  17. Castilho RC, de Moraes GJ, Halliday B (2012) Catalogue of the mite family Rhodacaridae Oudemans, with notes on the classification of the Rhodacaroidea. Zootaxa 3471:1–69

    Article  Google Scholar 

  18. Helle W, Sabelis MW (1985) Spider mites: their biology, natural enemies and control, vol 1B. Elsevier, Amsterdam, p 458

    Google Scholar 

  19. Walter DE (2003) The genus Gamasellodes (Acari: Mesostigmata: Ascidae) New Australian and North American species. Syst Appl Acarol (Spec Publ Lond) 15:1–10

    Google Scholar 

  20. Walter DE, Ikonen EK (1989) Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. J Nematol 21:315–327

    CAS  Google Scholar 

  21. Collier T, Van Steenwyk R (2004) A critical evaluation of augmentative biological control. Biol Control 31:245–256

    Article  Google Scholar 

  22. Hoy MA (2009) Agricultural acarology: introduction to integrate mite management. CRC Press, Boca Raton

    Google Scholar 

  23. van Lenteren JC (2003) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK

    Book  Google Scholar 

  24. Easterbrook MA, Fitzgerald JD, Solomon MG (2001) Biological control of strawberry tarsonemid mite Phytonemus pallidus and Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius). Exp Appl Acarol 25:25–36

    Article  CAS  Google Scholar 

  25. Jovicich E, Cantliffe DJ, Osborne LS, Stoffella PJ, Simonne EH (2008) Release of Neoseiulus californicus on pepper transplants to protect greenhouse-grown crops from Polyphagotarsonemus latus infestations. In: Mason PG, Gillespie DR, Vincent C (eds) Proceedings of 3rd international symposium on biological control of arthropods, Christchurch, pp 347–353

    Google Scholar 

  26. Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Control 45:185–199

    Article  Google Scholar 

  27. Lamlom M (2017) Mites associated with some plants of the family solanaceae at Fayoum and Beheira governorates. M.Sc., Faculty of Agriculture, Cairo University, 176 pp

    Google Scholar 

  28. Sabelis MW, van der Meer J (1986) Local dynamics of the interaction between predatory mites and two-spotted spider mites. In: Metz JAJ, Diekmann O (eds) Dynamics of physiological structured populations. Lecture notes in biomathematics. Springer-Verlag, Berlin, pp 1–24

    Google Scholar 

  29. van Rijn PCJ, Mollema C, Steenhuis-Broers GM (1995) Comparative life-history studies of Frankliniella occidentalis and Thrips tabaci (Thysanoptera, Thripidae) on cucumber. Bull Entomol Res 85:285–297

    Article  Google Scholar 

  30. van Rijn PCJ, Sabelis MW (1990) Pollen availability and its effect on the maintenance of populations of Amblyseius cucumeris, a predator of thrips. Int Symp Crop Prot Meded Fac Landbouwwet Rijksuniv Gent 55:335–342

    Google Scholar 

  31. Sabelis MW, van Rijn PCJ (1997) Predation by insects and mites. In: Lewis T (ed) Thrips as crop pests. CAB-International, Wallingford, UK, pp 259–354

    Google Scholar 

  32. van Rijn PCJ, van Houten YM (1991) Life history of Amblyseius cucumeris and Amblyseius barkeri (Acarina: Phytoseiidae) on a diet of pollen. In: Dusbabek F, Bukva V (eds) Modern acarology, vol 2. Academia, Prague and SPB Academic Publishing BV, The Hague, pp 647–654

    Google Scholar 

  33. van der Geest LPS (1985) Aspects of physiology. World crop pests: In: Helle W, Sabelis MW (eds) Spider mites. Their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, The Netherlands, pp 171–182

    Google Scholar 

  34. Mobley KN, Marini RP (1990) Gas exchange characteristics of apple and peach leaves infested by European red mite and two spotted spider mite. J Am Soc Hort Sci 115:757–761

    Article  Google Scholar 

  35. Nihoul P, Hance T, Impe GV, Marecha B (1992) Physiological aspects of damage caused by spider mites on tomato leaflets. J Appl Entomol 113:487–492

    Article  Google Scholar 

  36. Bondada BR, Oosterhuis DM, Tugwell NP, Kim KS (1995) Physiological and cytological studies of two spotted spider mite, Tetranychus urticae Koch, injury in cotton. Southwest Entomol 20:171–180

    Google Scholar 

  37. Wilson LJ (1993) Spider mites (Acari: Tetranychidae) affect yield and fiber quality of cotton. J Econ Entomol 86:566–585

    Article  Google Scholar 

  38. Singh OP (1988) Assessment of losses to soybean by red spider mite in Madhya Pradesh. Agric Sci Digest (Karnal) 8:129–130

    CAS  Google Scholar 

  39. Suekane R, Degrande PE, de Melo EP, Bertoncello TF, Sde LJI, Kodama C (2012) Damage level of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in soybeans. Rev Ceres 59:77–81

    Article  Google Scholar 

  40. Meck ED, Walgenbach JF, Kennedy GG (2012) Association of Tetranychus urticae (Acari: Tetranychidae) feeding and gold fleck damage on tomato fruit. Crop Prot 42:24–29

    Article  Google Scholar 

  41. Helle W, Sabelis MW (1985) Spider mites: their biology, natural enemies and control, vol 1A. Elsevier, Amsterdam, p 405

    Google Scholar 

  42. Feiertag-Koppen CCM (1976) Cytological studies of the two-spotted spider mite Tetranychus urticae Koch (Tetranychidae, trombidiformes). I: meiosis in eggs. Genetica 46:445–456

    Article  Google Scholar 

  43. Hussey NW, Parr WJ, Gould HJ (1965) Observations on the control of Tetranychus urticae Koch on cucumbers by the predatory mite Phytoseiulus riegeli Dosse. Entomol Exp et Appl 8:271–281

    Article  Google Scholar 

  44. Elmoghazy MME, El-Saiedy EMA, Romeih AHM (2011) Integrated control of the two spotted spider mite Tetranychu surticae Koch (Tetranychidae) on faba bean Vicia faba (L.) in an open field at Behaira Governorate, Egypt. Int J Environ Sci Eng 2:93–100

    Google Scholar 

  45. Greco NM, Liljesthröm GG, Ottaviano MFG, Cluigt N, Cingolani MF, Zembo JC, Sánchez NE (2011) Pest management plan for the two-spotted spider mite, Tetranychus urticae, based on the natural occurrence of the predatory mite Neoseiulus californicus in strawberries. Int J Pest Manag 57:299–308

    Article  Google Scholar 

  46. Hoddle MS, Aponte O, Kerguelen V, Heraty J (1999) Biological control of Oligonychus perseae (Acari: Tetranychidae) on avocado. I. Evaluating release timings, recovery and efficacy of six commercially available phytoseiids. Int J Acarol 25:211–219

    Article  Google Scholar 

  47. Hoddle MS, Robinson L, Virzi J (2000) Biological control of Oligonychus perseae (Acari: Tetranychidae) on avocado: III. Evaluating the efficacy of varying release rates and release frequency of Neoseiulus californicus (Acari: Phytoseiidae). Int J Acarol 26:203–214

    Article  Google Scholar 

  48. Jolly RL (2000) The predatory mite Neoseiulus californicus: its potential as biological control agent for the fruit tree red spider mite, Panonychus ulmi. BPC Conf Brighton Pest Control 1:487–490

    Google Scholar 

  49. Croft BA, Coop LB (1998) Heat units, release rate, prey density and plant age effects on dispersal by Neoseiulus fallacis (Acari: Phytoseiidae) after inoculation into strawberry. J Econ Entomol 91:94–100

    Article  Google Scholar 

  50. Croft BA, Pratt DA, Luh HK (2004) Low-density release of Neoseiulus fallacis provide for rapid dispersal and control of Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae) on apple seedlings. Exp Appl Acarol 33:327–339

    Article  CAS  Google Scholar 

  51. James DG (2001) History and perspectives of biological mite control in Australian horticulture using exotic and native phytoseiids. In: Halliday RB, Walter DE, Proctor HC (eds) Acarology: proceedings of the 10th international congress. CSIRO Publishing, Melbourne, pp 436–443

    Google Scholar 

  52. Waite GK (1988) Integrated control of Tetranychus urticae in strawberries in south-east Queensland. Exp Appl Acarol 5:23–32

    Article  CAS  Google Scholar 

  53. Gerson U (1992) Biology and control of the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Exp Appl Acarol 13:163–178

    Article  Google Scholar 

  54. Pena JE, Campbell CW (2005) Broad mite. EDIS. http://edis.ifas.ufl.edu/CH020

  55. Baker JR (1997) Cyclamen mite and broad mite. Ornamental and turf insect information notes (2 May 2016)

    Google Scholar 

  56. Rodriguez H, Montoya A, Miranda I, Rodriguez Y, Ramos M (2011) Influence of the phenological phase of two pepper cultivars on the behaviour of Polyphagotarsonemus latus (Banks). Rev Prot Veg 26:73–79

    Google Scholar 

  57. Pena JE, Obsorne L (1996) Biological control of Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) in greenhouses and field trials using introduction of predacious mites (Acarina. Phytoseiidae). Entomophaga 41:279–285

    Article  Google Scholar 

  58. Fan YQ, Petitt FL (1994) Biological control of broad mite, Polyphagotarsonemus latus (Banks), by Neoseiulus barkeri Hughes on pepper. Biol Control 4:390–395

    Article  Google Scholar 

  59. Weintraub PG, Kleitman S, Mori R, Shapira N, Palevsky E (2003) Control of broad mites (Polyphagotarsonemus latus (Banks)) on organic greenhouse sweet peppers (Capsicum annuum L.) with the predatory mite, Neoseiulus cucumeris. Biol Control 26:300–309

    Article  Google Scholar 

  60. Tal C, Coll M, Weintraub PG (2007) Biological control of Polyphagotarsonemus latus (Acari: Tarsonemidae) by the predaceous mite Amblyseius swirskii. IOBC/WPRS Bull 30:25–36

    Google Scholar 

  61. van Maanen R, Vila E, Janssen A (2010) Biological control of broad mite (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34

    Article  Google Scholar 

  62. Rodriguez H, Montoya A, Miranda I, Rodriguez Y, Depestre TL, Ramos M, Badii-Zabeh, MH (2015) Biological control of Polyphagotarsonemus latus (Banks) by the predatory mite Amblyseius largoensis (Muma) on sheltered pepper production in Cuba. Rev Prot Veg 30:70–76

    Google Scholar 

  63. Momen FM (1993) Effect of single and multiple copulation on fecundity, and sex ratio of the predacious mite, Amblyseius barkeri. Anz Schädlingsk Pflanzen Umweltschutz 66:148–150

    Article  Google Scholar 

  64. Momen FM (1997) Copulation, egg production and sex ratio in Cydnodromella negevi & Typhlodromus athiasae (Acari: Phytoseiidae). Anz Schädlingsk Pflanzen Umweltschutz 70:34–36

    Article  Google Scholar 

  65. Abdel-Khalek A, Fahim SF (2018) Influence of multiple mating and food deprivation on reproduction, longevity and sex ratio of Amblyseius largoensis. Biosci Res 15:437–442

    Google Scholar 

  66. Schausberger P (2004) Ontogenetic isolation favours sibling cannibalism in mites. Anim Behav 67:1031–1035

    Article  Google Scholar 

  67. Zannou ID, Hanna R, de Moraes GJ, Kreiter S (2005) Cannibalism and interspecific predation in a phytoseiid predator guild from Cassava fields in Africa: evidence from the laboratory. Exp Appl Acarol 37:27–42

    Article  Google Scholar 

  68. Momen FM (2010) Intra- and interspecific predation by Neoseiulus barkeri and Typhlodromus negevi (Acari: Phytoseiidae) on different life stages: predation rates and effects on reproduction and juvenile development. Acarina 18:81–88

    Google Scholar 

  69. Ali FS (1998) Life tables of Phytoseiulus macropilis (Banks) (Gamasida: Phytoseiidae) at different temperatures. Exp Appl Acarol 22:335–342

    Article  Google Scholar 

  70. Abdel-Khalek A, Momen F (2009) Mating and prey stage affecting life history, reproduction and life table of the predacious mite Phytoseiulus macropilis (Banks) (Acari: Phytoseiidae). Arch Phytopathol Plant Prot 42:751–765

    Article  Google Scholar 

  71. Camporese P, Duso C (1995) Life history and life table parameters of the predatory mite Typhlodromus talbii. Entomol Exp Appl 77:149–157

    Article  Google Scholar 

  72. Zaher MA, El-Borolossy MA, Ali FS (2001) Morphological and biological studies on Typhlodromus talbii Athias-Henriot (Gamasida: Phytoseiidae). Insect Sci Appl 21:43–54

    Google Scholar 

  73. Momen FM (2011) Life tables and feeding habits of Proprioseiopsis cabonus, a specific predator of tydeid mites (Acari: Phytoseiidae and Tydeidae). Acarina 19:103–109

    Google Scholar 

  74. Momen FM (1999) Biological studies of Amblyseius lindquisti a specific predator of eriophyid mites (Acari). Acta Phytopathol Entomol Hung 34:245–251

    Google Scholar 

  75. Abou-Awad BA, El-Sherif AA, Hassan MF, Abou-Elela MM (1998) Laboratory studies on development, longevity, fecundity and predation of Cydnoseius negevi (Swirski and Amitai) (Phytoseiidae) with two mite species as prey. J Plant Dis Prot 105:429–433

    Google Scholar 

  76. Momen FM, Metwally AM, Nasr AK, Abdallah AA, Saleh KM (2014) Life history of Proprioseiopsis badri feeding on four eriophyid mite species. Phytoparasitica 42:23–30

    Article  Google Scholar 

  77. Momen FM, Rasmy AH, Zaher MA, Nawar MS, Abou-Elella GM (2004) Dietary effect on the development, reproduction and sex-ratio of the predatory mite Amblyseius denmarkeri Zaher & El-Borolossy (Acari: Phytoseiidae). Int J Trop Insect Sci 24:192–195

    Article  Google Scholar 

  78. Momen FM (2009) Potential of three species of predatory phytoseiid mites as biological control agents of the peach silver mite, Aculus fockeui (Acari: Phytoseiidae and Eriophyidae). Acta Phytopathol Entomol Hung 44:151–158

    Article  Google Scholar 

  79. El-Laithy AYM, El-Sawi SA (1998) Biology and life table parameters of the predatory mite Neoseiulus californicus fed on different diet. J Plant Dis Prot 105:532–537

    Google Scholar 

  80. Abou-Awad BA, Metwally AM, Al-Azzazy MM (2010) Typhlodromips swirskii (Acari: Phytoseiidae) a predator of eriophyid and tetranychid mango mites in Egypt. Acta Phytopathol Entomol Hung 45:135–148

    Article  Google Scholar 

  81. Abou-Elella GM (2003) Thrips tabaci (Lind.) as suitable prey for three predacious mites of the family Phytoseiidae (Acari: Phytoseiida). J Agric Sci Mans Univ 28:6933–6939

    Google Scholar 

  82. Rasmy AH, Momen FM, Zaher MA, Abou-Elella GM (2003) Influence of diet on life history and predatory capacity of Amblyseius zaheri Yousef & El-Borolossy (Acari: Phytoseiidae). Insect Sci Appl 23:31–34

    Google Scholar 

  83. Rasmy AH, Momen FM, Zaher MA, Nawar MS, Abou-Elella GM (2002) Dietary influence on life history and predation of the phytoseiid mite, Amblyseius deleoni (Acari: Phytoseiidae)‏. In: Acarid phylogeny and evolution: adaptation in mites & ticks, pp 319–323

    Google Scholar 

  84. Metwally AM, Abou-Awad BA, Al-Azzazy MMA (2005) Life table and prey consumption of the predatory mite Neoseiulus cydnodactylon Shehata and Zaher (Acari: Phytoseiidae) with three mite species as prey. J Plant Dis Prot 112:276–286

    Google Scholar 

  85. Abou El-Elela MM, Abou-Elella GM (2001) Laboratory studies on development and oviposition of Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) fed on various preys. Egypt J Biol Pest Control 11:115–118

    Google Scholar 

  86. Momen FM, Abdel-Khalek A, El-Sawi S (2009) Life tables of the predatory mite Typhlodromus negevi feeding on prey insect species and pollen diet (Acari: Phytoseiidae). Acta Phytopathol Entomol Hung 44:353–361

    Article  Google Scholar 

  87. Momen FM, Abdel-Khalek A (2008) Influence of diet on biology and life-table parameters of the predacious mite Euseius scutalis (A.H.) (Acari: Phytoseiidae). Arch Phytopathol Plant Prot 41:418–430

    Article  Google Scholar 

  88. Momen FM (2001) Biology of Euseius yousefi (Acari: Phytoseiidae) life tables and feeding behaviour on different diets. Acta Phytopathol Entomol Hung 36:411–417

    Article  Google Scholar 

  89. Momen FM (2004) Suitability of the pollen grains, Ricinus communis and Helianthus annuus as food for six species of phytoseiid mites (Acari: Phytoseiidae). Acta Phytopathol Entomol Hung 39:415–422

    Article  Google Scholar 

  90. Midthassel A, Leather SR, Baxter IH (2013) Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Exp Appl Acarol 11:69–78

    Article  Google Scholar 

  91. Nguyen DT, Vangansbeke D, Lü X, De Clercq P (2013) Development and reproduction of the predatory mite Amblyseius swirskii on artificial diets. Biol Control 58:369–377

    CAS  Google Scholar 

  92. Nguyen DT, Vangansbeke D, De Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 2:181–194

    Article  CAS  Google Scholar 

  93. Momen FM, El-Laithy AY (2007) Suitability of the flour moth Ephestia kuehniella (Lepidoptera: Pyralidae) for three predatory phytoseiid mites (Acari: Phytoseiidae) in Egypt. Int J Trop Insect Sci 27:102–107

    Article  Google Scholar 

  94. Nar BR, Goleva I, Zebitz CPW (2014) Life tables of Neoseiulus cucumeris exclusively fed with seven different pollens. BioControl 59:195–203

    Article  Google Scholar 

  95. Ji J, Zhang Y, Wang J, Lin J, Sun L, Chen X, Ito K, Saito Y (2015) Can the predatory mites Amblyseius swirskii and Amblyseius eharai reproduce by feeding solely upon conspecific or heterospecific eggs (Acari: Phytoseiidae)? Appl Entomol Zool 50:149–154

    Article  CAS  Google Scholar 

  96. Nguyen DT, Vangansbeke D, De Clercq P (2015) Performance of four species phytoseiid mites on artificial and natural diets. Biol Control 80:56–62

    Article  Google Scholar 

  97. De Albuquerque FA, de Moraes GJ (2008) Perspectives for mass rearing of Iphiseiodes zuluagai Denmark & Muma (Acari: Phytoseiidae). Neotrop Entomol 3:328–333

    Article  Google Scholar 

  98. Domingos CA, Melo JWS, Gondim MGC, de Moraes GJ, Rachid HLM, Peter S (2010) Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae). Exp Appl Acarol 50:201–215

    Article  Google Scholar 

  99. Xia B, Zou Z, Li P, Lin P (2012) Effect of temperature on development and reproduction of Neoseiulus barkeri fed on Aleuroglyphus ovatus. Exp Appl Acarol 56:33–41

    Article  Google Scholar 

  100. Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) for pest control. Blackwell Science, Oxford, p 539

    Book  Google Scholar 

  101. Abou-Awad BA, EL Sawi SA (1993) Biology and life table of the predacious mite, Agistemus exsertus. Anz Schädlingsk Pflanzen Umweltschutz 66:101–103

    Article  Google Scholar 

  102. Momen FM (2001) Effects of diet on the biology and life tables of the predacious mite Agistemus exsertus (Acari: Stigmaeidae). Acta Phytopathol Entomol Hung 36:173–178

    Article  Google Scholar 

  103. Momen FM, El- Sawi SA (2006) Agistemus exsertus (Phytoseiidae) predation on insects: life history and feeding habits on three different insect eggs. Acarologia 47:211–217

    Google Scholar 

  104. Al-Shammery KA (2011) Plant pollen as an alternative food source for rearing Euseius scutalis (Acari: Phytoseiidae) in Hail, Saudi Arabia. J Entomol 8:365–374

    Article  Google Scholar 

  105. Momen FM (2011) Natural and factitious prey for rearing the predacious mite Agistemus exsertus Gonzales (Acari: Stigmaeidae). Acta Phytopathol Entomol Hung 46:267–275

    Article  Google Scholar 

  106. Salwa MES (2012) A new diet for reproduction of the predacous mite Agistemus exsertus Gonzalez (Acari: Stigmaeidae). J Appl Sci Res 8:2321–2324

    Google Scholar 

  107. Khodayari S, Kamali K, Fathipour Y (2008) Biology, life table and predation of Zetzellia mali (Stigmaeidae) on Tetranychus urticae (Acari: Tetranychidae). Acarina 16:191–196

    Google Scholar 

  108. Abou-Awad BA, Hassan MF, Romeih AH (2010) Biology of Agistemus olivi, a new predator of eriophid mites infesting olive trees in Egypt. Arch Phytopathol Plant Prot 43:1–8

    Article  CAS  Google Scholar 

  109. Mohamed OMO (2014) Biological aspects of the predaceous mite, Agistemus vulgaris Soliman and Gomaa and life table parameters on three host phytophagous mite species, (Acari: stigmaeidae). Egypt Acad J Biol Sci 7:165–171

    Google Scholar 

  110. Norton RA, Kethley JB, Johnston DE, O’Connor BM (1993) Phylogenetic perspectives on genetic systems and reproductive modes of mites. In: Wrensch DL, Ebbert MA (eds) Evolution and diversity of sex ratio of insects and mites. Chapman & Hall Publications, New York, pp 8–99

    Chapter  Google Scholar 

  111. Berndt O, Meyhöfer R, Poehling HM (2004) The edaphic phase in the ontogenesis of Frankliniella occidentalis and comparison of Hypoaspis miles and Hypoaspis aculeifer as predators of soil dwelling thrips stages. Biol Control 30:17–24

    Article  Google Scholar 

  112. Wiethoff W, Poehling H, Meyhöfer R (2004) Combining plant- and soil-dwelling predatory mites to optimize biological control of thrips. Exp Appl Acarol 34:239–261

    Article  Google Scholar 

  113. Ahmed WGO (1992) Studies on certain predaceous mites species in Sharkia and Giza Governorates. M.Sc. thesis, Faculty of Agriculture, Zagazig University, 157 pp

    Google Scholar 

  114. Ezz El-Dein SA (2003) Studies on some soil predacious mite associated with some field crop. M.Sc. thesis, Faculty of Science, Al-Azhar University (Girls), 148 pp

    Google Scholar 

  115. Al-Rehiayani SM, Fouly AH (2005) Cosmolaelaps simplex (Berlese), a polyphagous predatory mite feeding on root-knot nematode Meloidogyne javanica and citrus nematode Tylenchulus semipenetrans. Pak J Biol Sci 1:168–174

    Google Scholar 

  116. Fouly AH, Abdel-Baky NF (2015) Influence of prey types on the biological characteristics of Cosmolaelaps qassimensis (Acari: Laelapidae). J Entomol 1:21–29

    Article  Google Scholar 

  117. Binns ES (1972) Arctoseius cetratus (Sellnick) (Acarina: Ascidae) phoretic on mushroom sciarid flies. Acarologia 14:350–356

    Google Scholar 

  118. Beaulieu F, Weeks AR (2007) Free-living mesostigmatic mites in Australia: their roles in biological control and bioindication. Aust J Entomol Agric 47:460–478

    Article  Google Scholar 

  119. Walter DE, Lindquist EE (1989) Life history and behavior of mites in the genus Lasioseius (Acari: Mesostigmata: Ascidae) from grassland soils in Colorado, with taxonomic notes and description of a new species. Can J Zool 67:2797–2813

    Article  Google Scholar 

  120. Afifi AM, Hassan MF, Nawar MS (1986) Notes on the biology feeding habits of Protogamasellus minutus Hafez, El-Badry & Nasr. Bull Soc Entomol Egypt 66:251–259

    Google Scholar 

  121. Afifi AM (1977) Studies on some soil predacious mites. M.Sc. thesis, Faculty of Agriculture, Cairo University, 104 pp

    Google Scholar 

  122. El-Bishlawy SMO (1978) Ecological and biological studies on mites associated with weeds, with special reference to lawn grasses. Ph.D. dissertation, Faculty of Agriculture, Cairo University, 148 pp

    Google Scholar 

  123. Ahmed MA (1984) Biology of some soil fauna, feeding on soil microorganism. M.Sc. thesis, Faculty of Agriculture, Zagazig University, 109 pp

    Google Scholar 

  124. Nawar MS, Nasr AK (1988) Biology of the ascid mite Protogamasellus primitivus similis Genis, Loots & Ryke with description of immature stages (Ascidae). Bull Soc Entomol Egypt 68:85–94

    Google Scholar 

  125. Nasr AK, Nawar MS, Mowafi MH (1990) Biological studies and feeding habits of Lasioseius athiasae Nawar & Nasr (Mesostigmata: Ascidae) in Egypt. Bull Soc Entomol Egypt 39:75–88

    Google Scholar 

  126. Nawar MS, Rakha MA, Ali FS (1990) Laboratory studies on the predaceous mite, Lasioseius bispinosus Evans (Acari: Mesostigmata: Ascidae) on various kinds of food substances. Bull Soc Entomol Egypt 69:247–255

    Google Scholar 

  127. Nawar MS, El-Sherif AA (1992) Biological studies and description of developmental stages of Lasioseius zaheri Nasr (Acari: Ascidae). Ann Agric Sci Moshtohor 30:581–589

    Google Scholar 

  128. Mowafi MA (1993) Studies on some important economic predacious mites in Egypt. Ph.D. dissertation, Faculty of Agriculture, Al-Azhar University, 130 pp

    Google Scholar 

  129. Walter DE, Hunt HW, Elliott ET (1988) Guilds or functional groups? An analysis of predatory arthropods from a shortgrass steppe soil. Pedobiologia 31:247–260

    Google Scholar 

  130. Castilho RC, de Moraes GJ, Silva ES, Silva LO (2009) Predation potential and biology of Protogamasellopsis posnaniensis Wiśniewski and Hirschmann. Biol Control 48:164–167

    Article  Google Scholar 

  131. Walter DE, Oliver JH (1989) Geolaelaps oreithyiae, n. sp. (Acari: Laelapidae), a thelytokous predator of arthropods and nematodes, and a discussion of clonal reproduction in the Mesostigmata. Acarologia 30:291–303

    Google Scholar 

  132. Mahmoud R (2019) Taxonomy and behavior of some predacious gamasid mites used in biological control. Ph.D. dissertation, Cairo University, Faculty of Agriculture

    Google Scholar 

  133. Lawson-Balagbo LM, Gondim MGC Jr, de Moraes GJ, Hanna R, Schausberger P (2007) Life history of the predatory mites Neoseiulus paspalivorus and Proctolaelaps bickleyi; candidates for biological control of Aceria guerreronis. Exp Appl Acarol 43:49–61

    Article  CAS  Google Scholar 

  134. Galvão AS, Gondim MGC Jr, de Moraes GJ (2011) Life history of Proctolaelaps bulbosus feeding on the coconut mite Aceria guerreronis and other possible food types occurring on coconut fruits. Exp Appl Acarol 53:245–252

    Article  Google Scholar 

  135. Navasero MM, Hirao GA, Santiago DR, Navasero MV, Raros LC (2004) Laboratory rearing technique for the predatory Proctolaelaps yinchuanensis Xue, Sui & Yi (Ascidae: Gamasida: Acari) using Suidasia pontifica Oudemans (Suidasiidae: Acaridae: Acari). Philip Entomol 18:180

    Google Scholar 

  136. Gomaa WO (1998) Biological studies on some species of mesostigmatic mites with special reference to their chemical analysis together with preys. Ph.D. dissertation, Faculty of Agriculture, Cairo University, 299 pp

    Google Scholar 

  137. Abou-Elela MM (1999) Biological studies on some predacious mites associated with fruit trees and its debris. Ph.D. dissertation, Faculty of Agriculture, Cairo University, 185 pp

    Google Scholar 

  138. Mahmoud AM (1999) Ecological studies on certain soil fauna in Dakahlia governorate. M.Sc. thesis, Faculty of Agriculture, Al-Azhar University, 86 pp

    Google Scholar 

  139. Nasr AK, Nawar MS, Mowafi MH (1990) Biological studies on Proctolaelaps bickleyi Bram (Acari: Gamasida: Ascidae). Bull Soc Entomol Egypt 39:89–100

    Google Scholar 

  140. Bjornson S (2008) Natural enemies of mass-reared predatory mites (Family: Phytoseiidae) used for biological pest control. J Exp Appl Acarol 46:299–306

    Article  Google Scholar 

  141. Zhang QZ (2003) Mites of greenhouses identification, biology and control. CABI, Oxon, UK

    Book  Google Scholar 

  142. Gilkeson LA (1992) Mass rearing of phytoseiid mites for testing and commercial application. In: Andersonand TE, Leppla NC (eds) Advances in insect rearing for research and pest management. West View Press, Boulder, CO, USA, pp 489–506

    Google Scholar 

  143. Overmeer WPJ (1985) Rearing and handling. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies, and control. Elsevier, Amsterdam, The Netherlands, pp 161–170

    Google Scholar 

  144. Morales-Ramos JA, Rojas MG, Cahn D (2012) System and methods for production of predatory mites. Patent No. US 8,327,797 B1

    Google Scholar 

  145. Morales-Ramos JA, Rojas MG (2014) A modular cage system design for continuous medium to large scale in vivo rearing of predatory mites (Acari: Phytoseiidae). Psyche 2014:1–8

    Article  Google Scholar 

  146. Ramakers PMJ, Van Lieburg MJ (1982) Start of commercial production and introduction of Amblyseius mekenziei Sch. & Pr. (Acarina: Phytoseiidae) for the control of Thrips tabaci in glasshouses. Med Fac Landbow Rijksuniv Gent 47:541–545

    Google Scholar 

  147. Schliesske J (1981) On the technique for mass rearing of predatory mites under controlled conditions. Med Fac Landbow Rijksuniv Gent 46:511–517

    Google Scholar 

  148. Bolckmans KJF, van Houten YM (2006) Mite composition, use thereof, method for rearing the phytoseiid predatory mite Amblyseius swirskii, rearing system for rearing said phytoseiid mite and methods for biological pest control on a crop. WO patent WO/2006/057552

    Google Scholar 

  149. Barbosa MFC, de Moraes GJ (2015) Evaluation of astigmatid mites as factitious food for rearing four predaceous phytoseiid mites (Phytoseiidae). Biol Control 91:22–26

    Article  Google Scholar 

  150. Massaro M, Martin JP, de Moraes GJ (2016) Factitious food for mass production of predaceous phytoseiid mites commonly found in Brazil. Exp Appl Acarol 70:411–420

    Article  Google Scholar 

  151. Cavalcante ACC, Santos VLV, Rossi LC, de Moraes GJ (2015) Potential of five Brazilian populations of Phytoseiidae (Acari) for the biological control of Bemisia tabaci (Insecta: Hemiptera). J Econ Entomol 108:29–33

    Article  Google Scholar 

  152. De Clercq P, Bonte M, Van Speybroeck K, Bolckmans K, Deforce K (2005) Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen. Pest Manag Sci 61:1129–1132

    Article  CAS  Google Scholar 

  153. Navarro-Campos C, Wackers FL, Pekas A (2016) Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Exp Appl Acarol 70:69–78

    Article  CAS  Google Scholar 

  154. Momen FM, Nasr AK, Metwally AM, Mahmoud YA, Saleh KM (2016) Performance of five species of phytoseiid mites (Acari: Phytoseiidae) on Bactrocera zonata eggs (Tephritidae) as a factitious food. Acta Phytopathol Entomol Hung 51:123–132

    Article  CAS  Google Scholar 

  155. EI-Saiedy EMA (2003) Integrated control of red spider mite Tetranychus urticae Koch on strawberry plants. Ph.D. dissertation, Faculty of Agriculture, Cairo University, Egypt, 170 pp

    Google Scholar 

  156. Hassan MF, Ali FS, Hussein AM, Mahgob MH (2007) Control measures of Tetranychs urticae Koch on two cucumber cultivars in plastic houses. Acarines J Egypt Soc Acarol 1:11–15

    Google Scholar 

  157. El-Kholy MY, El-Saiedy EMAK (2009) Biological control of Thrips tabaci (lind.) and Aphis gossypii (Glover) using different predatory Phytoseiid mites and the biocide vertimec on eggplant at Behaira governorate. Egypt Acad J Biol Sci 2:13–22

    Google Scholar 

  158. Hassan AS (2013) Biological and chemical control of two spotted spider mite and important insects infesting sweet pepper in green houses in Egypt. Ph.D. dissertation, Faculty of Agriculture, Cairo University, Egypt

    Google Scholar 

  159. Abou-Awad BA, Afia SI, El-Saiedy E (2017) Population dynamics of Tetranychid mite and its predator on watermelon and muskmelon and effect of mite feeding on the phytochemical components of the host plants. Biosci Res 14:879–886

    Google Scholar 

  160. Kame MS, Afia SI, El Saiedy E (2018) Biological control of Tetranychus urticae (Acari: Tetranychidae) using four predatory mites (Acari: Phytoseiidae) on two sweet pea cultivars. Biosci Res 15:185–191

    Google Scholar 

  161. Cohen AC (2004) Insect diets: science and technology. CRC Press, Boca Raton

    Google Scholar 

  162. Hansen LS (1988) Control of Thrips tabaci (Thysanoptera: Thripidae) on glasshouse cucumber using large introductions of predatory mites Amblyseius barkeri (Acarina: Phytoseiidae). Entomophaga 33:33–42

    Article  Google Scholar 

  163. Ling P, Xia B, Li PX (2008) Functional response of Amblyseius barkeri (Acarina: Phytoseiidae) on Panonychus citri (Acari: Tetranychidae). Acta Arachnol Sin 17:29–34

    Google Scholar 

  164. Shu C, Zhong L, Li AH (2007) A preliminary report on the effect of control Panonychus citri by releasing Amblyseius barkeri. China Plant Prot 27:23–24

    CAS  Google Scholar 

  165. Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  Google Scholar 

  166. Messelink GJ, van Steenpaal SE, Ramakers PM (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. BioControl 51:753–768

    Article  Google Scholar 

  167. Khanamani M, Fathipour Y, Talebi AA, Mehrabadi M (2017) Quantitative analysis of long-term mass rearing of Neoseiulus californicus (Acari: Phytoseiidae) on almond pollen. J Econ Entomol 110:1442–1450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Momen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Momen, F., Fahim, S., Barghout, M. (2020). Mass Production of Predatory Mites and Their Efficacy for Controlling Pests. In: El-Wakeil, N., Saleh, M., Abu-hashim, M. (eds) Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-33161-0_5

Download citation

Publish with us

Policies and ethics