Skip to main content

Predacious Insects and Their Efficiency in Suppressing Insect Pests

  • Chapter
  • First Online:
Book cover Cottage Industry of Biocontrol Agents and Their Applications

Abstract

Using beneficial organisms, insect predators should help to decline the population density of pest organisms (insects or mites). Understanding the natural enemy capability to manage different insect pests may lead to sager insect control, comprising pesticide reduction and keeping the environment clean. The abundance of predators could help controlling and reducing the pest populations and thus preventing insect pest outbreaks. Interactions between multiple predator species should modify the strength of prey suppression. These interactions had been distinguished by different predation levels. There are various mechanisms may provide the greatest benefit for biocontrol agents. A suggested strategy for more efficient conservation biological control is containing collection natural enemies, preservation them and releasing the preserved biocontrol agents on target crops. Some of predators have a restricted tolerance to the prey feeding and abiotic factors; therefore, mass rearing and field application of insect predators are considered one of the main aspects in succeeding the biological control programs. In a case study, efficacy of insect predators against some aphid species in different crops was shown that insect predators played a significant role in controlling these aphid species. We tried to present the status and potential of insect predators throughout researching the abundance, the mass production and the field application of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aune JB (2012) Conventional, organic and conservation agriculture: production and environmental impact. In: Lichtfouse E (ed) Agroecology and strategies for climate change, vol 8, Sustainable agriculture reviews. Springer Science + Business Media B.V, Dordrecht/New York

    Google Scholar 

  2. Anon (2014) Recommendations adopted to combat agricultural pests, 296 pp. Agricultural Pesticides Committee, Egyptian Ministry of Agriculture and Land reclamation, Media Support Centre Press, Dekerness, Dakahila, Egypt (in arabic)

    Google Scholar 

  3. DeBach P (1964) Biological control of insect pests and weeds. Chapman and Hall, London

    Google Scholar 

  4. DeBach P (1974) Preface. In: DeBach P, Rosen D (eds) Biological control by natural enemies. Cambridge University Press, Cambridge

    Google Scholar 

  5. DeBach P, Rosen D (1991) Biological control by natural enemies, 2nd edn, 440 pp. Cambridge University Press, Cambridge. ISBN 0-521-39191-1

    Google Scholar 

  6. Mahr S (2017) The role of biological control in sustainable agriculture. University of Wisconsin–Madison. http://www.entomology.wisc.edu/mbcn/fea405.html. 28 Sept 2017

  7. Saleh MME, El-Wakeil NE, Elbehery H, Gaafar N, Fahim S (2019) Biological pest control for sustainable agriculture in Egypt. In: Negm AM, Abu-Hashim M (eds) Sustainability of agricultural environment in Egypt: part II. Springer Publisher. ISBN 978-3-319-95356-4, © Springer Nature Switzerland AG 2019-Soil-Water-Plant Nexus, Hdb Env Chem 77:145–188. https://doi.org/10.1007/978-3-319-95357-1

  8. Gurr G, Wratten S (2000) Biological control: measures of success, 429 pp. Springer Science + Business Media, Dordrecht

    Google Scholar 

  9. van Lenteren JC (2000) Success in biological control of arthropods by augmentation of natural enemies. In: Wratten S, Gurr G (eds) Biological control: measures of success. Springer Science + Business Media, Dordrecht, pp 77–103

    Chapter  Google Scholar 

  10. van Lenteren JC (2003) Commercial availability of biological control agents. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI, Oxon, UK, pp 167–179

    Google Scholar 

  11. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57:1–20

    Article  Google Scholar 

  12. Tawfik MFS (1997) Biological control for insect pests (in Arabic), 2nd edn., 757 pp. Academic Bookshop, Cairo

    Google Scholar 

  13. Doutt RL (1964) The historical development of biological control. In: DeBach P (ed) Biological control of insect pest and weeds. Chapman and Hall, London

    Google Scholar 

  14. El-Wakeil NE, Abd-Alla AM, El Sebai TN, Gaafar NM (2015) Effect of organic sources of insect pest management strategies and nutrients on cotton insect pests (Chap 2). In: Gorawala P, Mandhatri S (eds) Frame of book Agricultural research updates, vol 10, pp 49–81. ISBN: 978-1-63482-745-4

    Google Scholar 

  15. El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. In: Trdan S (ed) Agricultural and biological sciences “insecticides—development of safer and more effective technologies”. Intech, Rijeka, Croatia, pp 1–54

    Google Scholar 

  16. Bianchi FJ, Booij CJ, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Sci 273:1715–1727

    Article  CAS  Google Scholar 

  17. Leopold A (1933) Game management. Charles Scribner’s Sons, New York, NY

    Google Scholar 

  18. Holling CS (1961) Principles of insect predation. Annu Rev Entomol 6:163–182

    Article  Google Scholar 

  19. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomologist 91:385–398

    Article  Google Scholar 

  20. Ashfaq M, Abida N, Gulam MC (2002) A new technique for mass rearing of green lacewing on commercial scale. Pak J Appl Sci 2:925–926

    Article  Google Scholar 

  21. Ashfaq M, Nasreen A, Cheema GM (2004) Advances in mass rearing of Chrysoperla carnea (Stephen) (Neuroptera: Chrysopidae). South Pac Stud 24:47–53

    Google Scholar 

  22. van Lenteren JC, Manzaroli G (1999) Evaluation and use of predators and parasitoids for biological control of pests in greenhouses. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer, Dordrecht, The Netherlands, pp 183–201

    Chapter  Google Scholar 

  23. van Lenteren JC, Bueno VHBP (2003) Augmentative biological control of arthropods in Latin America. Biocontrol 48:123–139

    Article  Google Scholar 

  24. El-Wakeil NE, Vidal S (2005) Using of Chrysoperla carnea in combination with Trichogramma species for controlling Helicoverpa armigera. Egypt J Agric Res 83:891–905

    Google Scholar 

  25. Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  CAS  Google Scholar 

  26. Casula P, Wilby A, Thomas MB (2006) Understanding biodiversity effects on prey in multi-enemy systems. Ecol Lett 9:995–1004

    Article  Google Scholar 

  27. Letourneau D, Jedlicka J, Bothwell S, Moreno C (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Ann Rev Ecol Evol Syst 40:573–592

    Article  Google Scholar 

  28. Hochberg M (1996) Consequences for host population levels of increasing natural enemy species richness in classical biological control. Am Nat 147:307–318

    Article  Google Scholar 

  29. Stiling P, Cornelissen T (2005) What makes a successful biocontrol agent? A meta-analysis of biological control agent performance. Biol Control 34:236–246

    Article  Google Scholar 

  30. Griffin JN, Toscano BJ, Griffen BD, Silliman BR (2015) Does relative abundance modify multiple predator effects? Basic Appl Ecol 16:641–651

    Article  Google Scholar 

  31. Soluk DA (1993) Multiple prey effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

    Article  Google Scholar 

  32. Vance-Chalcraft HD, Soluk DA (2005) Estimating the prevalence and strength of non-independent predator effects. Oecologia 146:452–460

    Article  Google Scholar 

  33. van Leeuwen E, Brännström A, Jansen VAA, Dieckmann U, Rossberg AG (2013) A generalized functional response for predators that switch between multiple prey species. J Theor Biol 328:89–98

    Article  Google Scholar 

  34. Lampropoulos PD, Ch Perdikis D, Fantinou AA (2013) Are multiple predator effects directed by prey availability? Basic Appl Ecol 14:605–613

    Article  Google Scholar 

  35. Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88:2415–2426

    Article  Google Scholar 

  36. Schmitz OJ (2009) Effects of predator functional diversity on grassland ecosystem function. Ecology 90:2339–2345

    Article  Google Scholar 

  37. Griffin JN, De la Haye KL, Hawkins SJ, Thompson RC, Jenkins SR (2008) Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning. Ecology 89:298–305

    Article  Google Scholar 

  38. Losey JE, Denno RF (1998) Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:2143–2152

    Google Scholar 

  39. Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  40. Gagnon A, Heimpel G, Brodeur J (2011) The ubiquity of intraguild predation among predatory arthropods. PLoS ONE 6(11):e28061. https://doi.org/10.1371/journal.pone.0028061

    Article  CAS  Google Scholar 

  41. Griffen BD, Byers JE (2006) Partitioning mechanisms of predator interference in different habitats. Oecologia 146:608–614

    Article  Google Scholar 

  42. McCoy MW, Stier AC, Osenberg CW (2012) Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecol Lett 15:1449–1456

    Article  Google Scholar 

  43. Duffy JE, Cardinale BJ, France KE, McIntyre PB, Thebault E, Loreau M (2007) The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol Lett 10:522–538

    Article  Google Scholar 

  44. Griffin JN, Byrnes JE, Cardinale BJ (2013) Effects of predator richness on prey suppression: a meta-analysis. Ecology 94:2180–2187

    Article  Google Scholar 

  45. Finke DL, Snyder WE (2008) Niche partitioning increases resource exploitation by diverse communities. Science 321:1488–1490

    Article  CAS  Google Scholar 

  46. Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nature 466:109–112

    Article  CAS  Google Scholar 

  47. Werling BP, Lowenstein DM, Straub CS, Gratton C (2012) Multi-predator effects produced by functionally distinct species vary with prey density. J Insect Sci 12:1–7

    Article  Google Scholar 

  48. Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  49. Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668

    Article  Google Scholar 

  50. El-Wakeil NE, Saleh MME, Gaafar N, Elbehery H (2017) Conservation biological control practices (Chap 3) in frame of book biological control of pest and vector insects. Intech Open Access. ISBN 978-953-51-5041-1

    Google Scholar 

  51. Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

    Google Scholar 

  52. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Ann Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  53. Lucas E (2005) Intraguild predation among aphidophagous predators. Eur J Entomol 102:351–364

    Article  Google Scholar 

  54. Lucas E (2012) Intraguild interactions. In: Hodek I, van Emden HF, Honek A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae), pp 43–373. Wiley Blackwell

    Google Scholar 

  55. Jakobsen L, Enkegaard A, Brodsgaard HF (2004) Interaction between two polyphagous predators, Orius majusculus and Macrolophus caliginosus. Biocontrol Sci Technol 14:17–24

    Article  Google Scholar 

  56. Janssen A, Sabelis MW, Magalhães S, Montserrat M, Van Der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719

    Google Scholar 

  57. Perdikis D, Lucas E, Garantonakis N, Giatropoulos A, Kitsis P, Maselou D, Panagakis S, Lampropoulos P, Paraskevopoulos A, Lykouressis D, Fantinou A (2014) Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis. Biol Control 70:35–41

    Article  Google Scholar 

  58. Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of generalist predators on a biological control agent, Chrysoperla carnea: direct observations. Ecol Appl 9:409–417

    Google Scholar 

  59. Martinou AF, Raymond B, Milonas PG, Wright DJ (2010) Impact of intraguild predation on parasitoid foraging behaviour. Ecol Entomol 35:183–189

    Google Scholar 

  60. Lucas E, Rosenheim JA (2011) Influence of extraguild prey density on intraguild predation by heteropteran predators: a review of the evidence and a case study. Biol Control 59:61–67

    Article  Google Scholar 

  61. Rosenheim JA (2007) Intraguild predation: new theoretical and empirical perspectives. Ecology 88:2679–2680

    Google Scholar 

  62. El-Wakeil NE, Volkmar C (2011) Effect of weather conditions on frit fly (Oscinella frit, Diptera: Chloropidae) activity and infestation levels in spring wheat in central Germany. Gesunde Pflanzen 63:159–165

    Article  Google Scholar 

  63. Schmitz OJ, Post E, Burns CE, Johnston KM (2003) Ecosystem responses to global climate change: moving beyond color-mapping. Bioscience 53:1199–1205

    Article  Google Scholar 

  64. Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Google Scholar 

  65. Traill LW, Lim MLM, Sodhi NS, Bradshaw C (2010) Mechanisms driving change: altered species interactions and ecosystem function through global warming. J Anim Ecol 79:937–947

    Article  Google Scholar 

  66. Tylianakis JM, Binzer A (2014) Effects of global environmental changes on parasitoid–host food webs and biological control. Biol Control 75:77–86

    Article  Google Scholar 

  67. Sheldon KS, Yang S, Tewksbury JJ (2011) Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol Lett 14:1191–1200

    Article  Google Scholar 

  68. Schmitz OJ, Barton BT (2014) Climate change effects on behavioral and physiological ecology of predator–prey interactions: implications for conservation biological control. Biol Control 75:87–96

    Article  Google Scholar 

  69. Fayad YH, Hafez M, El-Kifl AH (1979) Survey of the natural enemies of the three corn borers Sesamia cretica, Chilo agamemnon and Ostrinia nubilalis in Egypt. Agric Res Rev 57:29–33

    Google Scholar 

  70. Ragab ZA, Awadallah KT, Farghaly HT, Ibrahim AM, El-Wakeil NE (2001) Population dynamics of corn pests and their associated predators in sorghum varieties grown in El-Giza Governorate in Egypt. Egypt J Appl Sci 16:652–666

    Google Scholar 

  71. Ragab ZA, Awadallah KT, Farghaly HT, Ibrahim AM, El-Wakeil NE (2001) Seasonal abundance of certain corn pests and their associated predators in maize varieties grown in E-Beheira Governorate in Egypt. Egypt J Appl Sci 16:298–312

    Google Scholar 

  72. EL-Heneidy AH, Abbas MST, El-Dakruory MSI (1978–1979) Seasonal abundance of certain predators in untreated Egyptian clover and cotton fields in Fayoum Governorate, Egypt. Bull Soc Entomol Egypt 62:89–95

    Google Scholar 

  73. El-Heneidy AH, Abbas MS, Khidr AA (1987) Comparative population densities of certain predators in cotton fields treated with sex pheromones and insecticides in Menoufia Governorate, Egypt. Bull Soc Entomol Egypt, Econ Ser 16:181–190

    Google Scholar 

  74. Abou-Elhagag GH (1998) Seasonal abundance of certain cotton pest and their associated natural enemies in Southern Egypt. Assiut J Agric Sci 29:253–267

    Google Scholar 

  75. EL-Heneidy AH, Sekamatte B, Mwambu N, Nyamutale C, Soroti PO (1996) Integrated pest management approach in cotton agro-ecosystem in Uganda. 1. Basic field data. Afr Crop Sci J 4:1–13

    Google Scholar 

  76. EL-Heneidy AH, Ebrahim AA, Gonzalez D, Abdel-Salam NM, Ellington J, Moawad GM (1997) Pest-predator-interactions in untreated cotton fields at three plant growth stages. 2. Planting date impact. Egypt J Agric Res 75:137–155

    Google Scholar 

  77. EL-Heneidy AH, Abdel-Samad SS (2001) Tritrophic interactions among Egyptian wheat plant, cereal aphids and natural enemies. Egypt J Pest Control 11:119–125

    Google Scholar 

  78. El-Arnaouty SA, Kortam MN (2012) First record of the mired predatory species, Nesidiocoris tenuis Reuter (Heteroptera: Miridae) on the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in Egypt. Egypt J Biol Pest Control 22:223–224

    Google Scholar 

  79. Sayed HE (2016) Ecological and biological studies on some destructive and beneficial insects on tomato plants in Egypt, 372 pp. PhD thesis, Faculty of Science, Al-Azhar University, Egypt

    Google Scholar 

  80. Hendawy AS, Saad IAI, Taha RH (2013) Survey of scale insects, mealy bugs and associated natural enemies on mulberry trees. Egypt J Agric Res 91:1447–1458

    Google Scholar 

  81. Ruberson JR, Nechols JR, Tauber MJ (1999) Biological control of arthropod pests, PI’. 417–448. In: Ruberson JR (ed) Handbook of pest management. Marcel Dekker, New York

    Google Scholar 

  82. Slininger PJ, Behle RW, Jackson MA, Schisler DA (2003) Discovery and development of biological agents to control crop pests. Neotrop Entomol 32:183–195

    Article  Google Scholar 

  83. van Lenteren JC, Roskam MM, Timmer R (1997) Commercial mass production and pricing of organisms for biological control of pests in Europe. Biol Control 10:143–149

    Article  Google Scholar 

  84. Sattar M, Abro GH (2011) Mass rearing of Chrysoperla carnea (Chrysopidae) adults for integrated pest management programs. Pak J Zool 43:483–487

    Google Scholar 

  85. El-Arnaouty SA, Abdel-Khalek S, Hassan H, Shahata M, Game M, Mahmoud N (1998) Mass rearing of aphidophagous predators, Chrysoperla carnea and Harmonia axyridis on Ephestia kuehniella eggs. In: Regional symposium for applied biological control in Mediterranean countries, Cairo, Egypt, 25–29 Oct 1998

    Google Scholar 

  86. Wang R, Nordlund DA (1994) Use of Chrysoperla spp. (Neuroptera: Chrysopidae) in augmentative release programs for control of arthropod pests. Biocontrol News Inf 15:51N–57N

    Google Scholar 

  87. Tauber MJ, Tauber CA, Daane KM, Hagen KS (2000) Commercialization of predators: recent lessons from green lacewings. Am Entomol 46:26–38

    Article  Google Scholar 

  88. Chang YF, Tauber MJ, Tauber CA (1996) Reproduction and quality of F1 offspring in Chrysoperacamea: differential influence of quiescence, artificially-induced diapause, and natural diapause. J Insect Physiol 42:521–528

    Article  CAS  Google Scholar 

  89. Hagen KS (1987) Nutritional ecology of terrestrial insect predators. In: Slansky Jr. F, Rodriguez JG (eds) Nutritional ecology of insects, mites, and spiders, pp 517–533. Wiley, New York

    Google Scholar 

  90. Albuquerque GS, Tauber CA, Tauber NJ (1994) Chrysoperla extenza (Neuroptera: Chrysopidae): life history and potential for biological control in Central and South America. Biol Control 4:8–13

    Article  Google Scholar 

  91. Anonymous (1997) Mass-reared insects get fast-food. USDA Agric Res 5–7

    Google Scholar 

  92. Osman MZ, Selman BJ (1993) Storage of Chrysoperla carnea Steph. (Neuroptera, Chrysopidae) eggs and pupae. J Appl Entomol 115:420–424

    Article  Google Scholar 

  93. Tauber MJ, Tauber CA, Gardescu S (1993) Prolonged storage of Chrysoperla carnea (Neuroptera: Chrysopidae). Environ Entomol 22:843–848

    Article  Google Scholar 

  94. Tauber MJ, Albuquerque GS, Tauber CA (1997) Storage of nondiapausing Chrysoperla externa adults: influence on survival and reproduction. Biol Control 10:69–72

    Article  Google Scholar 

  95. Jones SL, Ridgway RL (1976) Development of methods for field distribution of eggs of the insect predator Chrysopa carnea Stephens, 5 pp. USDA, ARS–S–124

    Google Scholar 

  96. Bigler F (ed) (1992) Quality control of mass reared arthropods. In: Proceedings, 5th workshop of the IOBC global working group, Wageningen, The Netherlands, 25–28 Mar 1991. Swiss Federal Research Station for Agronomy, Zurich

    Google Scholar 

  97. O’Neil RJ, Giles KL, Obrycki JJ, Mahr DL, Legaspi JC, Katovich K (1998) Evaluation of the quality of four commercially available natural enemies. Biol Control 11:1–8

    Article  Google Scholar 

  98. Zaki FN, El-Shaarawy MF, Farag NA (1999) Release of two predators and two parasitoidds to control aphids and whiteflies. J Pest Sci 72:19–20

    Google Scholar 

  99. El-Arnaouty SA, Beyssat-Arnaouty V, Ferran A, Galal H (2000) Introduction and release of the coccinellid Harmonia axyridis for controlling Aphis craccivora on faba beans in Egypt. Egypt J Biol Pest Control 10:129–136

    Google Scholar 

  100. El-Arnaouty SA, Gaber N, Tawfik MFS (2000) Biological control of the green peach aphid Myzus persicae by Chrysoperla carnea (stephens) sensu lato (Chrysopidae) on green pepper in greenhouses in Egypt. Egypt J Biol Pest Control 10:109–116

    Google Scholar 

  101. Attia AR, El-Arnaouty SA (2007) Use of the coccinellid predator Cryptolaemus montrouzieri against the striped mealybug, Ferrisia virgata on the ornamental plant, Agalypha macrophylla in Egypt. Egypt J Biol Pest Control 17:71–76

    Google Scholar 

  102. Afifi AI, El Arnaouty SA, Attia AR, Abd Alla AEL-M (2010) Biological control of citrus mealybug, Planococcus citri using coccinellid predator, Cryptolaemus montrouzieri. Pak J Biol Sci 13:216–222

    Article  Google Scholar 

  103. El-Arnaouty SA, Sewify GH (1998) Apilot experiment of using eggs and larvae of Chrsoperla carnae against Aphids gossypii on cotton in Egypt. Acts Zoll Fenica 209:103–106

    Google Scholar 

  104. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA et al (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309

    Article  Google Scholar 

  105. Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2008) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944–951

    Article  Google Scholar 

  106. Shanker C, Katti G, Padmakumar AP Padmavathi C, Sampathkumar M (2012) Biological control, functional biodiversity and ecosystem services in insect pest Management. In: Venkateswarlu et al (eds) Crop stress and its management: perspectives and strategies. https://doi.org/10.1007/978-94-007-2220-0_14, © Springer Science + Business Media B.V

  107. Crowder DW, Jabbour R (2014) Relationships between biodiversity and biological control in agroecosystems: current status and future challenges. Biol Control 75:8–17

    Article  Google Scholar 

  108. Prasad R, Snyder WE (2006) Polyphagy complicates conservation biological control that targets generalist predators. J Appl Ecol 43:343–352

    Article  Google Scholar 

  109. Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21

    Article  Google Scholar 

  110. Barbosa P (ed) (1998) Conservation biological control. Academic, New York

    Google Scholar 

  111. Fiedler AK, Landis DA, Wratten SD (2008) Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol Control 45:254–271

    Article  Google Scholar 

  112. Bianchi FJJA, Wackers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408

    Article  Google Scholar 

  113. Winkler K, Wackers F, Bukovinszkine-Kiss G, van Lenteren J (2006) Sugar resources are vital for Diadegma semiclausum fecundity under field conditions. Basic Appl Ecol 7:133–140

    Article  Google Scholar 

  114. Winkler K, Wackers FL, Termorshuizen AJ, van Lenteren JC (2010) Assessing risks and benefits of floral supplements in conservation biological control. Biocontrol 55:719–727

    Article  CAS  Google Scholar 

  115. Vandekerkhove B, De Clercq P (2010) Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus. Biol Control 53:238–242

    Article  Google Scholar 

  116. De Cocuzza GE, Clercq P, Lizzio S, Van de Veire M, Degheele D, Tirry L, Vacante V (1997) Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomol Exp Appl 85:189–198

    Article  Google Scholar 

  117. Griffiths GJK, Holland JM, Bailey A, Thomas MB (2008) Efficacy and economics of shelter habitats for conservation biological control. Biol Control 45:200–209

    Article  Google Scholar 

  118. Jabbour R, Crowder DW, Aultman EA, Snyder WE (2011) Entomopathogen biodiversity increases host mortality. Biol Control 59:277–283

    Google Scholar 

  119. Jabbour R, Zwickle S, Gallandt ER, McPhee KE, Wilson RS, Doohan D (2013) Mental models of organic weed management: comparison of New England US farmer and expert models. Renew Agric Food Syst. http://dx.doi.org/10.1017/S1742170513000185

  120. Chisholm P, Gardiner M, Moon E, Crowder DW et al (2014) Exploring the toolbox for investigating impacts of habitat complexity on biological control. Biol Control 75:48–57

    Google Scholar 

  121. Roschewitz I, Gabriel D, Tscharntke T, Thies C (2005) The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J Appl Ecol 42:873–882

    Google Scholar 

  122. José-María L, Sans FX (2011) Weed seedbanks in arable fields: effects of management practices and surrounding landscape. Weed Res 51:631–640

    Article  Google Scholar 

  123. Solangi GS, Mahar GM, Oad FC (2008) Presence and abundance of different insect predators against sucking insect pest of cotton. J Entomol 5:31–37

    Article  Google Scholar 

  124. Lang A (2003) Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia 134:144–153

    Article  Google Scholar 

  125. El-Wakeil NE, Volkmar C, Sallam AA (2010) Jasmonic acid induces resistance to economically important insect pests in winter wheat. Pest Manage Sci 66:549–554

    Article  CAS  Google Scholar 

  126. El-Wakeil NE, Volkmar C (2012) Effect of jasmonic acid application on economically insect pests and yield in spring wheat. Gesunde Pflanzen 64:107–116

    Article  CAS  Google Scholar 

  127. El-Wakeil NE, El-Sebai TN (2009) Role of biofertilizer on faba bean growth, yield, and its effect on bean aphid and the associated predators. Arch Phytopathol Plant Prot 42:1144–1153

    Article  CAS  Google Scholar 

  128. El-Wakeil NE, Saleh SA (2009) Effects of neem and diatomaceous earth against Myzus persicae and associated predators in addition to indirect effects on artichoke growth and yield parameters. Arch Phytopathol Plant Prot 42:1132–1143

    Article  Google Scholar 

  129. Werling BP, Gratton C (2010) Local and broadscale landscape structure differentially impact predation of two potato pests. J Appl Ecol 20:1114–1125

    Article  Google Scholar 

  130. Webster B, Bruce T, Dufour S, Birkemeyer C, Birkett M, Hardie J, Pickett J (2008) Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J Chem Ecol 34:1153–1161

    Article  CAS  Google Scholar 

  131. Goffreda JC, Mutschler MA, Tingey WM (1988) Feeding behavior of potato aphid affected by glandular trichomes of wild tomato. Entomol Exp Appl 48:101–107

    Article  Google Scholar 

  132. Alhmedi A, Haubruge E, Bodson B, Francis F (2007) Aphidophagous guilds on nettle (Urtica dioica) strips close to fields of green pea, rape and wheat. Insect Sci 14:419–424

    Article  Google Scholar 

  133. Vandereycken A, Brostaux Y, Joie E, Haubruge E, Verheggen FJ (2013) Occurrence of Harmonia axyridis (Coccinellidae) in field crops. Eur J Entomol 110:285–292

    Article  Google Scholar 

  134. Hodek I, Van Emden HF, Honěk A (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae), 561 pp. Wiley-Blackwell

    Google Scholar 

  135. Caballero-López B, Bommarco R, Blanco-Moreno JM, Sans FX, Pujade-Villar J, Rundlöf M, Smith HG (2012) Aphids and their natural enemies are differently affected by habitat features at local and landscape scales. Biol Control 63:222–229

    Article  Google Scholar 

  136. Snyder WE, Snyder GB, Finke DL, Straub CS (2006) Predator biodiversity strengthens herbivore suppression. Ecol Lett 9:789–796

    Article  Google Scholar 

  137. Vandereycken A, Durieux D, Joie E, Francis F, Haubruge E, Verheggen FJ (2015) Aphid species and associated natural enemies in field crops: what about the invasive ladybird Harmonia axyridis? Entomol Faunistique 68:3–15

    Google Scholar 

  138. Chakraborty A, Kumar K, Rajadurai G (2014) Biodiversity of insect fauna in okra (Abelmoschus esculentus) ecosystem. Trends Biosci 7:2206–2211

    Google Scholar 

  139. Alhmedi A, Haubruge E, D’Hoedt S, Francis F (2011) Quantitative food webs of herbivore and related beneficial community in non-crop and crop habitats. Biol Control 58:103–112

    Article  Google Scholar 

  140. Zheng Y, Km Daane, Hagen KS, Mittler TE (1993) Influence of larval food consumption on the fecundity of the lacewing Chrysoperla camea. Ent Exp Appl 67:9–14

    Article  Google Scholar 

  141. Lopez-Arroyo JI, Tauber CA, Tauber MJ (2000) Storage of lacewing eggs: post-storage hatching and quality of subsequent larvae and adults. Biol Control 18:165–171

    Article  Google Scholar 

  142. Gaafar N (2002) Effects of some neem products on Helicoverpa armigera and their natural enemies Trichogramma spp. and Chrysoperla carnea. MSc, Faculty of Agricultural Science, at the Georg-August University Goettingen, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil El-Wakeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Wakeil, N., Gaafar, N. (2020). Predacious Insects and Their Efficiency in Suppressing Insect Pests. In: El-Wakeil, N., Saleh, M., Abu-hashim, M. (eds) Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-33161-0_4

Download citation

Publish with us

Policies and ethics