Skip to main content

Biological Control of Phyto-pathogenic Bacteria

  • Chapter
  • First Online:
Cottage Industry of Biocontrol Agents and Their Applications

Abstract

The pathogenic bacteria can attack many plants causing different symptoms include necrosis, tissue maceration, wilting and hyperplasia and resulting diseases and damage to crops. The bacteria enter the host plant through natural openings or wounds and then it colonized locally intercellular spaces and systematically the vascular system of host. Virulence of bacterial pathogen was increased by increase of bacterial metabolites production viz. enzymes, toxins and/or plant hormones often under control of quorum sensing mechanisms. Application of effective chemicals or resistance sources against bacterial plant diseases are limited because of copper compounds may cause phytotoxic or rusting to plants as well as antibiotics application has not enough disease control. Therefore, the biological control can be successfully applied for crop protection against bacterial pathogens, where the biological control depended on the use of natural enemies viz. bacteria, fungi and viruses which they was common in any agricultural system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gadoury DM, McHardy WE, Rosenberger DA (1989) Integration of pesticide application schedules for disease and insect control in apple orchards of the northern United States. Plant Dis 73:98–105

    Google Scholar 

  2. Agrios G (1997) Plant pathology, 4th edn. Academic Press, pp 1–635

    Google Scholar 

  3. Van der Zwet T, Beer SV (1995) Fire blight—its nature, prevention and control. A practical guide to integrated disease management. Agr Inf Bull 631:91

    Google Scholar 

  4. Jones AL, McManus PS, Chiou CS (1996) Epidemiology and genetic diversity of streptomycin resistance in E. amylovora in Michigan. Acta Hort 338:333–340

    Google Scholar 

  5. Vanneste JL (2000) Fire blight. The disease and causative agent, Erwinia amylovora. CABI Publications, pp. 1–370

    Google Scholar 

  6. Arwiyanto T (2014) Biological control of plant diseases caused by bacteria. J Perlindungan Tanaman Indonesia 18:1–12

    Google Scholar 

  7. Andrews JH (1992) Biological control in the phyllosphere. Annu Rev Phytopathol 30:603–635

    Article  CAS  Google Scholar 

  8. Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetyl-phloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554

    Article  CAS  Google Scholar 

  9. Abd El- Kahir H (2004) Efficacy of starner in controlling the bacterial soft rot pathogen in onion. Ann Agric Sci Ain Shams Univ Cairo 49:721–731

    Google Scholar 

  10. Abd El- Khair H (2004) Variation and control of Erwinia carotovora subsp. carotovora isolates the causal agent of potato soft rot disease. Ann Agric Sci Ain Shams Univ Cairo 49:377–388

    Google Scholar 

  11. Coplin DL, Rowan RG, Chisholm DA, Whitmoyer RE (1981) Characterization of plasmids in Erwinia stewartii. Appl. Env. Microbiol. 42:599–604

    CAS  Google Scholar 

  12. Schaad NW, Jones JB, Chun W (2001) Laboratory guide for identification of plant pathogenic bacteria, 3rd edn. The American Phytopathological Society Press, St. Paul

    Google Scholar 

  13. Lelliott RA, Stead D (1987) Methods for the diagnosis of bacterial diseases of plants. Blackwell Scientific Publications, Oxford, UK, pp 1–216

    Google Scholar 

  14. Vidaver AK, Lambrecht PA (2004) Bacteria as plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-I-2004-0809-01

    Article  Google Scholar 

  15. Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671–673

    Article  CAS  Google Scholar 

  16. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H et al (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi. Int J Sys Evol Microbiol 51:89–103

    Google Scholar 

  17. Pitzschke A, Hirt H (2010) New insights into an old story: Agrobacterium-induced tumor formation in plants by plant transformation. EMBO J 29:1021–1032

    Article  CAS  Google Scholar 

  18. Schell J, Van Montagu M (1977) The Ti-plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of NIF genes in plants? Basic Life Sci 9:159–179

    CAS  Google Scholar 

  19. Goodner B, Hinkle G, Gattung S, Miller N et al (2001) Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294(5550):2323–2328

    Article  CAS  Google Scholar 

  20. Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68

    Article  CAS  Google Scholar 

  21. Samson R, Legendre JB, Christen R, Saux MFL, Achouak W, Gardan L (2005) Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol 55:1415–1427

    Google Scholar 

  22. Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I, Breuer J, Breuer J, Glasner JD, Perna NT, Kelman A, Charkowski AO (2007) Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathol 97:1150–11639

    Article  Google Scholar 

  23. ZhangY Fan Q, Loria R (2016) A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 39:252–259

    Article  CAS  Google Scholar 

  24. Van der Zwet T, Keil HL (1979) Fire blight—a bacterial disease of Rosaceous plants. Agric handbook, vol 510. Department of Agriculture, Washington D.C, U.S

    Google Scholar 

  25. Abd El-Khair H, Seif El-Nasr HI (2002) Epidemiology and control of fire blight disease in pears. Arab Univ J Agric Sci, Ain Shams Univ, Cairo 10:1059–1069

    Google Scholar 

  26. Barakat FM, Seif El-Nasr HI, Mikhail MS, Abd El-Khair H (2002) Effect of some fungicides and bactericides on the growth Erwinia amylovora, the causal of fire blight of pear. In: The First conference of the Central Agric Pesticide Lab, vol 1, pp 328–337, 3–5 Sep 2002

    Google Scholar 

  27. Sands DC (1990) Physiological criteria-determinative tests. In: Klement Z, Rudolph K, Sands DC (eds) Methods in phyto-bacteriology. Akadémiai Kiadó, Budapest, pp 133–143

    Google Scholar 

  28. Abd El-Khair H, Barakat FM, Mikhail MS, Seif El-Nasr HI (2003) Differentiation between Egyptian isolates of Erwinia amylovora, based on cellular protein patterns. In: Proceedings of 10th Congress of Phytopathology, 9–10.12.2003, Giza, Egypt, pp 339–353

    Google Scholar 

  29. Haggag KHE, Abd El-Khair H (2006) Antibacterial activity of some Egyptian medicinal plants against Erwinia carotovora subsp. carotovora isolates in potato. Egypt J Appl Sci 21:428–441

    Google Scholar 

  30. Faquihi H, Mhand RA, Ennaji M, Benbouaza A, Achbani E (2014) Aureobasidium pullulans (De Bary) G. Arnaud, a biological control against soft rot disease in potato caused by Pectobacterium carotovorum. Int J Sci Res 3:1779–1786

    Google Scholar 

  31. Perombelon M, Kelman A (1980) Ecology of the soft rot erwinias. Annu Rev Phytopathol 18:361–387

    Article  Google Scholar 

  32. Perombelon MCM (2002) Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol 51:1–12

    Article  Google Scholar 

  33. Toth Ian K, Bell Kenneth S, Holeva Maria C, Birch PRJ (2003) Soft rot erwiniae: from genes to genomes. Mol Plant Pathol 4:17–30

    Article  CAS  Google Scholar 

  34. Arnold DL, Gibbon MJ, Jackson RW, Wood JR, Brown J, Mansfield JW et al (2001) Molecular characterization of avrPphD, a widely-distributed gene from Pseudomonas syringae pv. phaseolicola involved in non-host recognition by pea (Pisum sativum). Physiol Mol Plant Pathol 58:55–62

    Article  CAS  Google Scholar 

  35. Green S, Studholme DJ, Laue BJ, Dorati F, Lovell H, Arnold D, Cottrell JE, Bridgett S, Blaxter M, Huitema E, Thwaites R, Sharp PM, Jackson RW, Kamoun S (2010) Comparative genome analysis provides insights into the evolution and adaptation of Pseudomonas syringae pv. aesculi on Aesculus hippocastanum. PLoS ONE, 5:e10224

    Google Scholar 

  36. Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor‐like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301

    Article  CAS  Google Scholar 

  37. Abd El-Khair H, Nofal MA (2001) Flowers bacterial soft rot of bird of paradise (Strelitzia reginae, Banks) in Egypt and its control. Arab Univ J Agric Sci, Ain Shams Univ, Cairo 9:397–410

    Google Scholar 

  38. Denny TP (2006) Plant-pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 573–644

    Google Scholar 

  39. Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol 187:920–928

    Article  Google Scholar 

  40. Abd El-Khair H, Seif El-Nasr HI (2012) Applications of Bacillus subtilis and Trichoderma spp. for controlling the potato brown rot in field. Arch Phytopathol Plant Prot 45:1–15

    Article  Google Scholar 

  41. Mew T, Alvarez A, Leach J, Swings J (1993) Focus on bacterial blight of rice. Plant Dis 77:5–12

    Article  Google Scholar 

  42. Verdier V, Vera Cruz C, Leach JE (2011) Controlling rice bacterial blight in Africa: Needs and prospects. J Biotechnol 159:320–328

    Article  CAS  Google Scholar 

  43. Ramanamma C, Santoshkumari M (2017) Biological control of blight of rice using RR8 rhizosphere bacteria. Int J Current Microbiol Appl Sci 5(Special Issue):124–128

    Google Scholar 

  44. Johnson BJ (1994) Biological control of annual bluegrass with Xanthomonas campestris pv. poannua in bermudagrass. Hort Sci 29:659–662

    Article  Google Scholar 

  45. Bora LC, Gangopadhyay S, Chand JN (1994) Biological control of bacterial leaf spot (Xanathomans campestris pv. vignaeradiatae Dye) of mung bean with phylloplane antagonists. AGRISsince 23:162–168

    Google Scholar 

  46. Jalali I, Parashar RD (1995) Biocontrol of Xanthomonas campestris pv. campestris in Brassica juncea with phylloplane antagonist. Plant Disease Res10:145–147

    Google Scholar 

  47. Vauterin L, Rademaker J, Swings J (2000) Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 7:677–682

    Article  Google Scholar 

  48. Babu AGC, Thind BS (2005) Potential use of combinations of Pantoea agglomerans, Pseudomonas fluorescens and Bacillus subtilis for the control of bacterial blight of rice. Ann the Sri Lanka Dept Agric 7:23–37

    Google Scholar 

  49. Young JM, Park DC, Shearman HM, Fargier E (2008) A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 5:366–377

    Article  CAS  Google Scholar 

  50. Hopkins DL (1989) Xylella fastidiosa: xylem-limited bacterial pathogen of plants. Ann Rev Phytopathol 27:271–290

    Article  Google Scholar 

  51. Araújo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Enviro Microbiol 68:4906–4914

    Article  CAS  Google Scholar 

  52. Zhang S, Cruz ZF, Kumar D, Hopkins DL, Gabriel DW (2011) The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce’s disease strains. J Bacteriol 193:5576–5577

    Article  CAS  Google Scholar 

  53. Lo CT (1998) General mechanisms of action of microbial biocontrol agents. Plant Pathol Bull 7:155–166

    CAS  Google Scholar 

  54. Ahanger RA, Bhatand HA, Dar NA (2014) Biocontrol agents and their mechanism in plant disease management. Sciencia Acta Xaveriana, An Int Sci J 5:47–58

    Google Scholar 

  55. Tzeng KC, Lin YC, Hsu ST (1994) Foliar fluorescent pseudomonads from crops in Taiwan and their antagonism to phytopathogenic bacteria. Plant Pathol Bull 3:24–33

    Google Scholar 

  56. Nishioka MF, Nakashima N, Matsuyama N (1997) Antibacterial activities of metabolites produced by Erwinia spp. against various phytopathogenic bacteria. Ann Phytopathol Soc Japan 63:99–102

    Article  Google Scholar 

  57. Défago G, Haas D (1990) Pseudomonads as antagonists of soilborne plant pathogens: modes of action and genetic analysis. In: Bollag JM, Stotsky G (eds) Soil biochemistry. Marcel Dekker Inc., New York

    Google Scholar 

  58. Pal KK, Gardener BM (2006) Biological control of plant pathogens. The Plant Health Instructor. https://doi.org/10.1094/PHI-A-2006-1117-02

    Article  Google Scholar 

  59. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  Google Scholar 

  60. DeSouza JTA, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-PearsonV Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopatholol 93:966–975

    Article  CAS  Google Scholar 

  61. Notz R, Maurhofer M, Schnider-Keel U Duffy B, Haas D, Defago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathol 91:873–881

    Google Scholar 

  62. Nalini S, Parthasarathi R, PrabudossV (2016) Production and characterization of lipo-peptide from Bacillus SNAU01 under solid state fermentation and its potential application as anti-biofilm agent. Biocatal Agric Biotechnol 5:123–132

    Google Scholar 

  63. Bakker PA, Glandorf DC, Viebahn M, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, Van Loon LC (2002) Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2, 4-diacetyl-phloroglucinol on the microflora of field grown wheat. Antonie Van Leeuwenhoek 81:617–624

    Article  CAS  Google Scholar 

  64. Kerr A (1989) Commercial release of a genetically engineered bacterium for the control of crown gall. Agric Sci 2:41–48

    Google Scholar 

  65. Ghisalberti EL, Sivasithamparam K (1991) Antifungal antibiotics produced by Trichoderma spp. Soil Biol Biochem 23:1011–1020

    Article  CAS  Google Scholar 

  66. Maurhofer M, Keel C, Haas D, Defago G (1995) Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHA0 with enhanced antibiotic production. Plant Pathol 44:40–50

    Article  Google Scholar 

  67. Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–50

    Google Scholar 

  68. Koumoutsi A, Chen XH, Hene A, Liesegang H, Gabrielle H, Frnke P, Vater J, Borris H (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bact 186:1084–1096

    Article  CAS  Google Scholar 

  69. Smith KP, Havy MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus UW85. Plant Dis 77:139–142

    Article  Google Scholar 

  70. Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    Article  CAS  Google Scholar 

  71. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  Google Scholar 

  72. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Enviro Microbiol 71:4577–4584

    Article  CAS  Google Scholar 

  73. Sandra AI, Wright CH, Zumoff LS, Steven VB (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Enviro Microbiol 67:282–292

    Google Scholar 

  74. Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-Diacetphloroglucinal from a fluorescent pseudomonad and investigation of physic-ological parameters influencing its production. Appl Enviro Microbiol 17:107–113

    Google Scholar 

  75. Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas in rhizosphere of wheat. Appl Enivron Microbiol 56:908–912

    CAS  Google Scholar 

  76. Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluterin. Phytopathol 70:712–715

    Article  CAS  Google Scholar 

  77. Islam TM, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 in linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Eviron Microbiol 71:3786–3796

    Article  CAS  Google Scholar 

  78. Wilhite SE, Lunsden RD. Strancy DC (2001) Peptide synthetase gene in Trichod-erma virens. Appl Environ Microbiol 65:5055–5062

    Google Scholar 

  79. Homma Y, Kato Z, Hirayman F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by Pseudomonas capacia as an agent for biological control of soilbrone plant pathogens. Soil Biochem 21:723–728

    Article  CAS  Google Scholar 

  80. Leong SA, Expert D (1989) Siderophores in plantpathogen interactions. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives, vol. 3. McGraw-Hill, New York, pp 62–83

    Google Scholar 

  81. Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Molec Plant Microbe Interact 4:5–13

    Article  CAS  Google Scholar 

  82. Hamdan H, Weller DM, Thomashow LS (1991) Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-7 9 and M4-80R. Appl Environ Microbiol 57:3270–3277

    CAS  Google Scholar 

  83. Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathol 86:149–155

    Article  CAS  Google Scholar 

  84. Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathol 83:302–307

    Article  Google Scholar 

  85. Chet I (1987) Trichoderma application, mode of action and potential as biocontrol agent of soil-borne pathogenic fungi. In: Chet I (ed) Innovative approaches to plant disease control. Wiley, New York, pp 137–160

    Google Scholar 

  86. Haran S, Schickler H, Peer S, Logeman S, Oppenheim A, Chet I (1993) Increased constitutive chitinase activity in transformed Trichoderma harzianum. Biol Control 3:101–108

    Article  Google Scholar 

  87. Shapira R, Ordentlich A, Chet I, Oppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathol 79:1124–1249

    Article  Google Scholar 

  88. Sequeira L (1983) Mechanisms of induced resistance in plants. Ann Rev Microbiol 37:51–79

    Article  CAS  Google Scholar 

  89. Hammerschmidt R, Lamport DTA, Muldoon EP (1984) Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol. Plant Pathol 24:43–47

    Article  CAS  Google Scholar 

  90. Alstrom S (1995) Evidence of disease resistance induced by rhizosphere pseudomonads against Pseudomonas syringae pv. phaseolicola. J Gen Appl Microbiol 41:315–325

    Article  CAS  Google Scholar 

  91. Van Peer RG, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathol 81:728–734

    Article  Google Scholar 

  92. Maurhofer M, Hase C, Meuwly P, Metraux JP, Defago G (1994) Induction of systemic resistance to tobacco necrosis virus. Phytopathol 84:139–146

    Article  CAS  Google Scholar 

  93. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  94. Valencia-Cantero E, Hernandez-Calderón E, Velázquez-Becerra C, López-Meza JE, Alfaro-Cuevas R, Lopez-Bucio J (2007) Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil 291:263–273

    Article  CAS  Google Scholar 

  95. Tsuge K, Akiyama T, Shoda MJ (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bacteriol 183:6265–6273

    Article  CAS  Google Scholar 

  96. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058

    Article  CAS  Google Scholar 

  97. Masih H, Singh AK, Kumar Y, Srivastava A, Singh RK, Mishra SK, Shivam K (2011) Isolation and optimization of metabolite production from mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. J Pharmac Biomed Sci 11:1–4

    Google Scholar 

  98. Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc National Acad Sci USA 100:4927–4932

    Article  CAS  Google Scholar 

  99. Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integrat Biol 3:130–138

    Article  Google Scholar 

  100. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathol 97:250–256

    Article  Google Scholar 

  101. Cornelis P (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645

    Article  CAS  Google Scholar 

  102. Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    Article  CAS  Google Scholar 

  103. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  104. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  105. Weindling R (1934) Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctonia solani and other soil fungi. Phytopathol 24:1153–1179

    Google Scholar 

  106. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  Google Scholar 

  107. Kapat A, Zimand G, Elad Y (1998) Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytis cinerea. Physiol Mol Plant Pathol 52:127–137

    Article  CAS  Google Scholar 

  108. Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  109. Kerr A, Htay K (1974) Biological control of crown gall through bacteriocin production. Physiol Plant Pathol 41:37–40

    Article  Google Scholar 

  110. Garrett CME (1978) Biological control of crown gall, Agrobacterium tumefaciens. Ann Appl Biol 89:96–97

    Article  Google Scholar 

  111. Amiot AF, Róux J, Faivre M (1982) Biological control of Agrobacterium tumefaciens (Schmit et Townsend) Conn on Chrysanthemum with K84 Agrobacterium radiobacter (Beijerinck et Var Delder) Conn strain. In: ISHS Acta Horticulturae, 125: Symposium on Chrysanthemum. https://doi.org/10.17660/actaHortic.125.30

  112. Thomson JA (1986) The potential for biological control of crown gall disease on grapevines. Trends of Biotechnol 4:219–224

    Article  Google Scholar 

  113. López MM, Gorris MT, Salcedo CI, Montojo AM, Miró M (1989) Evidence of biological control of Agrobacterium tumefaciens strains sensitive and resistant to agrocin 84 by different Agrobacterium radiobacter strains on stone fruit trees. Appl Environ Microbiol 55:741–746

    Google Scholar 

  114. Vicedo B, Penalver R, Asins MJ, Lopez MM (1993) Biological control of Agrobacterium tumefaciens, colonization, and pAgK84 transfer with Agrobacterium radiobacter K84 and the Tra-mutant strain K1026. Appl Environ Microbiol 59(1):309–315

    CAS  Google Scholar 

  115. Ryder MH, Jones DA (1991) Biological control of crown gall using Agrobacterium strains K84 and K1026. Austr J Plant Physiol 18:571–579

    Google Scholar 

  116. Rhouma A, Ferchichi A, Hafsa M, Boubaker A (2004) Efficacy of the non-pathogenic Agrobacterium strains K84 and K1026 against crown gall in Tunisia. Phytopathol Mediterr 43:167–176

    Google Scholar 

  117. Nalini S, Parthasarathi R, PrabudossV (2016) Production and characterization of lipo-peptide from Bacillus SNAU01 under solid state fermentation and its potential application as anti-biofilm agent. Biocatal Agric Biotechnol 5:123–132. -->

    Google Scholar 

  118. Kawaguchi A, Inoue K, Ichinose Y (2008) Biological control of crown gall of grapevine, rose and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Phytopathol 98:1218–1225

    Article  CAS  Google Scholar 

  119. Gupta AK, Khosla K, Bhardwaj SS, Thakur A, Devi S, Jarial RS, Sharma C, Singh KP, Srivastava DK, Lal R (2010) Biological control of crown gall on peach and cherry rootstock colt by native Agrobacterium radiobacter isolates. Open Horticul J 3:1–10

    Article  Google Scholar 

  120. Tolba IH, Soliman MA (2013) Efficacy of native antagonistic bacterial isolates in biological control of crown gall disease in Egypt. Ann Agric Sci 58:43–49

    Article  Google Scholar 

  121. Czajkowski R (2016) Bacteriophages of soft rot Enterobacteriaceae—a minireview. FEMS Microbiol Let 363:230

    Article  CAS  Google Scholar 

  122. Krzyzanowska DM, Potrykus M, Golanowska M, Polonis K, Gwizdek-Wisniewska A Lojkowska E, Jafra S (2012) Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. J Plant Pathol 94:367–378

    Google Scholar 

  123. Delfan AS, Etemadifar Z, Emtiazi G, Bouzari M (2015) Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. Braz J Microbiol 46:791–797

    Article  CAS  Google Scholar 

  124. Essarts YR, Cigna J, Laurent Q, Caron A, Munier E, Cirou AB, Hélias V, Faure D (2015) Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Appl Environ Microbiol 82:268–278

    Article  CAS  Google Scholar 

  125. Hadizadeh I, Peivastegan B, Hannukkala A, Van der Wolf JM, Nissinen R, Pirhonen M (2019) Biological control of potato soft rot caused by Dickeya solani and the survival of bacterial antagonists under cold storage conditions. Plant Pathol 68:297–311

    Article  CAS  Google Scholar 

  126. Vanneste JLYUJ, Beer SV (1992) Role of antibiotic production by Erwinia herbicola Eh252 in biological control of Erwinia amylovora. J Bacteriol 174:2785–2796

    Article  CAS  Google Scholar 

  127. Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathol 83:117–123

    Article  Google Scholar 

  128. Pusey PL (2002) Biological control agents for fire blight of apple compared under conditions limiting natural dispersal. Plant Dis 86:639–644

    Article  CAS  Google Scholar 

  129. Laux P, Wesche J, Zeller W (2003) Field experiments on biological control of fire blight by bacterial antagonists. J Plant Dis Prot 110:401–407

    Google Scholar 

  130. Özaktan H, Bora T (2004) Biological control of fire blight in pear orchards with a formulation of Pantoea agglomerans strain Eh 24. Braz J Microbiol 35:224–229. http://dx.doi.org/10.1590/S1517-83822004000200010

  131. Sundin GW, Yoder KS, Aldwinckle HS (2009) Field evaluation of biological control of fire blight in the Eastern United States. Plant Dis 93:386–394

    Article  CAS  Google Scholar 

  132. Gerami E, Hassanzadeh N, Abdollahi H, Ghasemi A, Heydari A (2013) Evaluation of some bacterial antagonists for biological control of fire blight disease. J Plant Pathol 95:127–134

    Google Scholar 

  133. Doolotkeldieva T, Bobusheva S (2016) Fire blight disease caused by Erwinia amylovora on rosaceae plants in Kyrgyzstan and biological agents to control this disease. Adv Microbiol 6:831–851

    Article  CAS  Google Scholar 

  134. Smail AB, Abderrahman O, Abdessalem T (2016) Evaluation of biological control agent Pantoea agglomerans P10c against fire blight in Morocco. Afr J Agric Res 11:1661–1667

    Article  Google Scholar 

  135. Mikiciński A, Sobiczewski P, Puławska J, Maciorowski R (2016) Control of fire blight Erwinia amylovora by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple (Malus spp.). Europ J Plant Pathol 145:265–276

    Google Scholar 

  136. Ameur A, Rhallabi N, Doussomo ME, Benbouazza A, Ennaji MM, Achbani E (2017) Selection and efficacy biocontrol agents in vitro against fire blight (Erwinia amylovora) of the rosacea. Int Res J Eng Technol 4:539–545

    Google Scholar 

  137. Sharifazizi M, Harighi B. Sadeghi A (2017) Evaluation of biological control of Erwinia amylovora, causal agent of fire blight disease of pear by antagonistic bacteria. Biol Cont 104:28–34

    Google Scholar 

  138. Cronin D, Loccoz YM, Fenton A, Dunne C, Dowling DN O’Gara F (1997) Ecological interaction of a biocontrol Pseudomonas fluorescens strain producing 2,4-diacetyl-phloroglucinol with the soft rot potato pathogen Erwinia carotovora subsp. atroseptica. FEMS Microbiol Ecol 23:195–106

    Google Scholar 

  139. EI-Hendawy HH, Zeid IM, Mohamed ZK (1998) The biological control of soft rot disease in melon caused by Erwinia carotovora subsp. carotovora using Pseudomonas fluorescens. Microbial Res 153:55–60

    Google Scholar 

  140. Zamanian S, Shahidi BGH, Saadoun H (2005) First report of antibacterial properties of a new of Sterptomyces plicatus (strain 101) against Erwinia carotovra subsp. carotovra from Iran. Biotechnol 4:114–120

    Article  CAS  Google Scholar 

  141. Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, Bouarab K, Beaulieu C, Ennaji MM, Barakate M (2012) Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J Microbiol Biotechnol 28:303–311

    Google Scholar 

  142. Abd El-Khair H, Haggag KHE (2007) Application of some bactericides and bioagents for controlling the soft rot disease in potato. Res J Agric Biol Sci 3:463–473

    Google Scholar 

  143. Juan NM, Jessica CS, Luigi CP, Marcia CL, Ricardo FP, Renate ST (2008) Biocontrol of Erwinia carotovora on Calla (Zantedeschia sp.). Agro Sur 36:59–70

    Article  Google Scholar 

  144. Dong F, Zhang XH, Li YH, Wang JF, Zhang SS, Hu XF, Chen JS (2010) Characterization of the endophytic antagonist pY11T-3-1 against bacterial soft rot of Pinellia ternate. Let Appl Microbiol 50:611–617

    Article  CAS  Google Scholar 

  145. Mello MRF, Silveira EB, Viana IO, Guerra ML, Mariano RLR (2011) Use of antibiotics and yeasts for controlling Chinese cabbage soft rot. Hortic Bras 29:78–83

    Article  Google Scholar 

  146. Qianqian L, Ni H, Meng S, He Y, Yu Z, Li L (2011) Suppressing Erwinia carotovora pathogenicity by projecting N-acyl homoserine lactonase onto the surface of Pseudomonas putida cells. J Microbiol Biotechnol 21:1330–1335

    Article  CAS  Google Scholar 

  147. Issazadeh K, Rad SK, Zarrabi S, Rahimibashar MR (2012) Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and Pectobacterium carotovorum subsp. carotovorum. Afr J Microbiol Res 6:1615–1620

    Google Scholar 

  148. Ghods-Alavi BS, Ahmadzadeh M, Behboudi K, Jamali S (2012) Biocontrol of rhizome soft rot (Pectobacterium carotovorum) on valerian by Pseudomonas spp. under in vitro and greenhouse conditions. J Agric Technol 8:1913–1923

    Google Scholar 

  149. Rahman MM, Ali ME, Khan AA, Akanda AM, Kamal Uddin MD, Hashim U, AbdHamid SB (2012) Isolation, characterization and identification of biological control agent for potato soft rot in Bangladesh. Sci World J Article ID 723293, 6 p. https://doi.org/10.1100/2012/723293

  150. Algeblawi A, Adam F (2013) Biological control of Erwinia carotovora subsp carotovora by Pseudomonas fluorescens, Bacillus subtilis and Bacillus thurin-giensis. Int J Chem Environ Biol Sci 1:771–774

    Google Scholar 

  151. Sowmya DS, Rao MS, Kumar RM, Gavaskar J, Priti K (2012) Biomana-gement of Meloidogyne incognita and Erwinia carotovora in carrot (Daucus carota L.) using Pseudomonas putida and Paecilomyces lilacinus. Nematol medit 40:189–194

    Google Scholar 

  152. Saputra H, Puspita F, Nugroho TT (2013) Production of an antibacterial compound against the plant pathogen Erwinia carotovora subs. carotovora by the biocontrol strain Gliocladium sp. T.N.C73. J Agric Technol 9:1157–1165

    Google Scholar 

  153. Zhao Y, Li P, Huang K, Wang Y, Hu H, Sun Y (2013) Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World J Microbiol Biotechnol 29:411–420

    Article  CAS  Google Scholar 

  154. Li HY, Luo Y, Zhang XS, Shi WL, Gong ZT, Shi M, Chen LL, Chen XL, Zhang YZ, Song XY (2014) Trichokonins from Trichoderma pseudokoningii SMF2 induce resistance against Gram-negative Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. FEMS Microbiol Lett 354:75–82

    Article  CAS  Google Scholar 

  155. Makhlouf, Abeer, H. and Abdeen, Rehab (2014) Investigation on the effect of chemical and biological control of bacterial soft root disease of potato in storage. J Biol Agric Healthcare 4:31–44

    Google Scholar 

  156. Sandipan PB, Chaudhary RF, Shanadre CM, Rathod NK (2015) Appraisal of diverse bioagents against soft rot bacteria of potato (Solanum tuberosum L.) caused by Erwinia carotovora subsp. carotovora under in vitro test. Europ J Pharmac Medical Res 2:495–500

    Google Scholar 

  157. Idowu OO, Olawole OI, Idumu OO, Salami AO (2016) Bio-control effect of Trichoderma asperellum (Samuels) Lieckf. and Glomus intraradices Schenk on okra seedlings infected with Pythium aphanidermatum (Edson) Fitzp and Erwinia carotovora (Jones). American J Exp Agric 10:1–12

    Article  Google Scholar 

  158. Doolotkeldieva T, Bobusheva S, Suleymankisi A (2016) Biological control of Erwinia carotovora ssp. carotovora by Streptomyces species. Adv Microbiol 6:104–114

    Article  CAS  Google Scholar 

  159. Ha NT, Minh TQ, Hoi PX, Thuy NTT, Furuya N, Long HH (2018) Biological control of potato tuber soft rot using N-acyl-L-homoserine lactone-degrading endophytic bacteria. Current Sci 115:1921–1927

    Article  CAS  Google Scholar 

  160. Salem EA, Abd El-Shafea YM (2018) Biological control of potato soft rot caused by Erwinia carotovora subsp. carotovora. Egypt J Biol Pest Cont 19:28:94

    Google Scholar 

  161. Kiewnick AB, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of Barley, by antagonistic Pantoea agglomerans. Phytopathol 90:368–375

    Article  Google Scholar 

  162. Völksch B, May R (2001) Biological control of Pseudomonas syringae pv. glycinea by epiphytic bacteria under field conditions. Microb Ecol 41:132–139

    Google Scholar 

  163. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. https://doi.org/10.1104/pp.103

    Article  Google Scholar 

  164. Kotan R, Sahin F (2006) Biological control of Pseudomonas syringae pv. syringae and nutritional similarity in carbon source utilization of pathogen and its potential biocontrol agents. J Turk Phytopath 35:1–13

    Google Scholar 

  165. Hassan EO, El-Meneisy AZA (2014) Biocontrol of halo blight of bean caused by Pseudomonas phaseolicola. Int J Virol 10:235–242

    Article  Google Scholar 

  166. Mougou I, M’hamdi NB (2018) Biocontrol of Pseudomonas syringae pv. syringae affecting citrus orchards in Tunisia by using indigenous Bacillus spp. and garlic extract. Egypt J Biol Pest Cont 19:28:60

    Google Scholar 

  167. Wicaksono WA, Jones EE, Casonato S, Monk J, Ridgway HJ (2018) Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol Cont 116:103–112

    Article  Google Scholar 

  168. Nikolić I, Berić T, Stankovic SS (2019) Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS-10.7 and Bacillus amyloliquefaciens (SS-12.6 and SS-38.4) strains. J Appl Microbiol https://doi.org/10.1111/jam.14070

  169. Anuratha CS, Gnanamanickam SS (1990) Biological control of bacterial wilt caused by Pseudomonas solanacearum in India with antagonistic bacteria. Plant Soil 124:109–116

    Article  Google Scholar 

  170. Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agric Biol 8:1560–8530

    Google Scholar 

  171. Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Cont 42:336–344

    Article  Google Scholar 

  172. Kuarabachew H, Assefa F, Hiskias Y (2007) Evaluation of Ethiopian isolates of Pseud-omonas fluorescens as biocontrol agent against potato bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Acta Agric Slov 90:125–135

    Google Scholar 

  173. Tahat MM, Sijam K (2010) Ralstonia solanacearum: the bacterial wilt causal agent. Asian J Plant Sci 9:385–393

    Article  Google Scholar 

  174. Nguyen MT, Ranamukhaarachchi SL (2010) Soil-borne antagonists for biological control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. J Plant Pathol 92:395–406

    CAS  Google Scholar 

  175. Nawangsih AA, Damayanti I, Wiyono S, Kartika JG (2011) Selection and characterization of endophytic bacteria as biocontrol agents of tomato bacterial wilt disease. HAYATI J Biosci 18:66–70

    Article  Google Scholar 

  176. Seleim MAA, Saead FA, Abd-El-Moneem KMH, Abo-ELyousr KAM (2011) Biological control of bacterial wilt of tomato by plant growth promoting rhizobacteria. Plant Pathol J 10:146–153

    Article  Google Scholar 

  177. Maji S, Chakrabartty PK (2014) Biocontrol of bacterial wilt of tomato caused by Ralstonia solanacearum by isolates of plant growth promoting rhizobacteria. Astu J crop Sci 8:208–214

    Google Scholar 

  178. Santiago TR, Grabowski C, Rossato M, Romeiro RS, Mizubuti ESG (2015) Biological control of Eucalyptus bacterial wilt with rhizobacteria. Biol Cont 80:14–22

    Article  Google Scholar 

  179. Aino M (2016) Studies on biological control of bacterial wilt caused by Ralstonia solanacearum using endophytic bacteria. J Gen Plant Pathol 82:323–325

    Article  Google Scholar 

  180. Singh D, Yadav DK, Chaudhary G, Rana VS, Sharma RK (2016) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol 7:327

    Article  CAS  Google Scholar 

  181. Ilsan NA, Nawangsih AA, Wahyudi AT (2016) Rice phyllosphere actinomycetes as biocontrol agent of bacterial leaf blight disease on rice. Asian J Plant Pathol 10:1–8

    Article  Google Scholar 

  182. Sindhan GS, Parashar RD, Indra H (1997) Biological control of bacterial leaf of rice caused by Xanthomonas oryzae pv. oryzae. Plant Dis Res 12:29–32

    Google Scholar 

  183. Hastuti RD, Estari Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J Biosci 19:155–162

    Google Scholar 

  184. Van Hop D, Phuong HPT, Quang ND, Ton PH, Ha TH, Van Hung N, Van NT, Van Hai T, Kim Quy NT, Anh Dao NT, Thi-Thom V (2014) Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Sci 1:103–111

    Article  Google Scholar 

  185. El-Shakh ASA, Kakar KU, Wang X, Almoneafy AA, Ojaghian MR, Li B (2015) Controlling bacterial leaf blight of rice and enhancing the plant growth with endophytic and rhizobacterial Bacillus strains. Toxicol Environ Chem 97:766–785

    Article  CAS  Google Scholar 

  186. Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M (2017) Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01895

    Article  Google Scholar 

  187. Assis SMP, Mariano RLR, Michereff SJ, Silva G, Maranhão EAA (1999) Antagonism of yeasts to Xanthomonas campestris pv. campestris on cabbage phylloplane in field. Revista de Microbiol 30:191–195

    Article  Google Scholar 

  188. Luna CL, Mariano RLR, Souto-Maior AM (2002) Production of a biocontrol agent for crucifers black rot diseaseproduction of a biocontrol agent for crucifers black rot disease. Braz J Chem Eng 19:133–140

    Article  CAS  Google Scholar 

  189. Wulff EG, Mguni CM, Mortensen CN, Keswani CL, Hockenhull J (2002) Biological control of black rot (Xanthomonas campestris pv. campestris) of brassicas with an antagonistic strain of Bacillus subtilis in Zimbabwe. Europ J Plant Pathol 108:317–325

    Article  Google Scholar 

  190. Massomo SMS, Mortensen CN, Mabagala RB, Newman MA, Hockenhull J (2004) Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains. J Phytopathol 152:98–105

    Article  Google Scholar 

  191. El-Hendawy HH, Osman ME, Sorour NM (2005) Biological control of bacterial spot of tomato caused by Xanthomonas campestris pv. vesicatoria by Rahnella aquatilis. Microbiol Res 160:343–352

    Article  Google Scholar 

  192. Monteiro L, Mariano RLR, Souto AMM (2005) Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris. Braz Arch Biol Technol 48:23–29

    Article  CAS  Google Scholar 

  193. Mirik M, Aysan Y, Çinar Ö (2008) Biological control of bacterial spot disease of pepper with Bacillus strains. Turkish J Agric For 32(5):381–390

    Google Scholar 

  194. Suárez-Estrella F, Ros M, Vargas-García MC, López MJ, Moreno J (2014) Control of Xanthomonas campestris pv. vesicatoria using agroindustrial waste-based compost. J Plant Pathol 96:243–248

    Google Scholar 

  195. Salah Eddin K, Marimuthu T, Ladhalakshmi D, Velazhahan R (2007) Biological control of bacterial blight of cotton caused by Xanthomonas axonopodis pv. malvacearum with Pseudomonas fluorescens. Arch Phytopathol Plant Prot 40:291–300

    Article  Google Scholar 

  196. Montakhabi MK, Rahimian H, Falahati RM, Jafarpour B (2011) In vitro investigation on biocontrol of Xanthomonas axonopodis pv. citri cause of citrus bacterial canker by citrus antagonistic bacteria. J Plant Prot (Agric Sci Technol) 24:368–376

    Google Scholar 

  197. Lopes LP, Oliveira Jr AG, Beranger JPO, Góis CG. Vasconcellos FCS, San Martin JA. Andrade CGTJ, Mello JCP, Andrade G (2012) Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus. Trop Plant Pathol 37. https://doi.org/10.1590/s1982-56762012000400001

  198. Das R, Mondal B, Mondal P, Khatua DC, Mukherjee N (2014) Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India. J Biopest 7(supp):38–41

    Google Scholar 

  199. Murate LS, de Oliveira AG, Higashi AY, Barazetti AR Simionato AS, da Silva CS, Simões GC, dos Santos IMO, Ferreira MR, Cely MVT, Navarro MOP, de Freitas VF, Nogueira MA, de Mello JCP, Leite Jr RP, Andrade G (2015) Activity of secondary bacterial metabolites in the control of citrus canker. Agric Sci 6:295–303

    Google Scholar 

  200. Tewfike TA, Desoky SM (2015) Biocontrol of Xanthomonas axonopodis causing bacterial spot by application of formulated phage. Ann Agric Sci Moshtohor 53:615–624

    Google Scholar 

  201. Chavan NP, Pandey R, Nawani N, Nanda RK, Tandon GD, Khetmalas MB (2016) Biocontrol potential of actinomycetes against Xanthomonas axonopodis pv. punicae, a causative agent for oily spot disease of pomegranate. Biocontrol Sci Technol 26:351–372

    Article  Google Scholar 

  202. Osman TMT, Algam SAE, Ali ME, Osman EHB, Mahdi AA (2016) In vitro screening of some biocontrol agents against Xanthomonas axonopodis pv. malvacearum isolated from infected cotton plants. Int J Agric, For Plantat 2:270–278

    Google Scholar 

  203. Puneeth ME (2016) Biocontrol of bacterial blight of pomegranate caused by Xanthomonas axonopodis pv. punicae (Hingorani and Singh) Vauterin et al. MSc. Thesis, University of Agricultural Sciences, Plant Pathology, Bengaluru (Abstract)

    Google Scholar 

  204. Corrêa BO, Soares VN, Sangiogo M, de Oliveira JR, Andréa BMAB (2017) Interaction between bacterial biocontrol-agents and strains of Xanthomonas axonopodis pv. phaseoli effects on biocontrol efficacy of common blight in beans. Afr J Microbiol Res 11:1294–1302

    Article  Google Scholar 

  205. Oliver R, Owens W, Hopkins DL (2008) Interaction of a biological control strain and a pathogenic strain of Xylella fastidiosa in grapevine. J Plant Pathol 90S:195

    Google Scholar 

  206. Lacava PT, Arau´jo WL, Marcon J, Maccheroni W Jr, Azevedo JL (2004) Interaction between endophytic bacteria from citrus plants and the phytopathogenic bacteria Xylella fastidiosa, causal agent of citrus-variegated chlorosis. Let Appl Microbiol 39:55–59

    Google Scholar 

  207. Hopkins DL, Thompson CM (2008) Biological control of Pierce’s disease in the vineyard with a benign strain of Xylella fastidiosa. J Plant Pathol 90S:115

    Google Scholar 

  208. Hopkins DL (2005) Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa Benign to Grapevine. Plant Dis 89:1348–1352

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abd-El-Khair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abd-El-Khair, H. (2020). Biological Control of Phyto-pathogenic Bacteria. In: El-Wakeil, N., Saleh, M., Abu-hashim, M. (eds) Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-33161-0_10

Download citation

Publish with us

Policies and ethics