Skip to main content

Tissue Optics

  • Chapter
  • First Online:
The Optical Clearing Method

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

Light interaction with biological materials depends on the material’s optical properties. From those properties, the absorption and scattering coefficients are the most important, since they quantify how much of a light beam is attenuated when traveling inside a tissue. The scattering coefficient is known to be significantly higher than the absorption coefficient in biological materials, meaning that most of the light is scattered, turning optical methods in clinical practice limited. Such difference between the scattering and absorption coefficients is mainly due to a refractive index mismatch between tissue components and fluids. We explain this concept in the present chapter before introducing the technique that efficiently minimizes this effect in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnostics, 3rd edn. (SPIE Press, Bellingham, 2015)

    Book  Google Scholar 

  2. T. Vo-Dinh (Ed.). Biomedical Photonics Handbook, Chapter 2, 2nd edition, 1, CRC Press, Boca Raton, 2015

    Google Scholar 

  3. A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Optical properties of skin, subcutaneous and muscle tissues: a review. J. Innov. Opt. Health Sci. 4(1), 9–38 (2011)

    Article  Google Scholar 

  4. S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58(11), R37–R61 (2013)

    Article  ADS  Google Scholar 

  5. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, A.A. Gavrilova, S.V. Kapralov, V.A. Grishaev, V.V. Tuchin, Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology. Med. Laser Appl. 22(2), 95–104 (2007)

    Article  Google Scholar 

  6. I. Yariv, G. Rahamim, E. Shlieselberg, H. Duadi, A. Lipovsky, R. Lubart, D. Fixler, Detecting nanoparticles in tissue using an optical iterative technique. Biomed. Opt. Express 5(11), 3871–3881 (2014)

    Article  Google Scholar 

  7. Y. Zhou, J. Yao, L.V. Wang, Tutorial on photoacoustic tomography. J. Biomed. Opt. 21(6), 061007 (2016)

    Article  ADS  Google Scholar 

  8. https://omlc.org/spectra/index.html. Accessed 21 Jan 2019

  9. S. Takatani, M.D. Graham, Theoretical analysis of diffuse reflectance from a two-layer tissue model. I.E.E.E. Trans. Biomed. Eng. BME-26, 656–664 (1987)

    Google Scholar 

  10. R.L. van Veen, H.J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, R. Cubeddu, Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy. J. Biomed. Opt. 10(5), 054004 (2005)

    Article  ADS  Google Scholar 

  11. G.M. Hale, M.R. Querry, Optical constants of water in the 200nm to 200μm wavelength region. Appl. Opt. 12(3), 555–563 (1973)

    Article  ADS  Google Scholar 

  12. V.V. Tuchin, Lasers and Fiber Optics in Biomedical Science, 2nd edn. (Saratov University Press, Saratov, Russia, 2010)

    Google Scholar 

  13. V.V. Tuchin, S.R. Utz, I.V. Yaroslavsky, Tissue optics, light distribution and spectroscopy. Opt. Eng. 33(10), 3178–3188 (1994)

    Article  ADS  Google Scholar 

  14. L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Skeletal muscle dispersion (400–1000 nm) and kinetics at optical clearing. J. Biophotonics 11(1), e201700094 (2018)

    Article  Google Scholar 

  15. C.T. Germer, A. Roggan, J.P. Ritz, C. Isbert, D. Albrecht, G. Müller, H.J. Buhr, Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Laser. Surg. Med. 23(4), 194–203 (1998)

    Article  Google Scholar 

  16. A.N. Yaroslavsky, P.C. Schultze, I.V. Yaroslavsky, R. Schober, F. Ulrich, H.-J. Schwarzmaier, Optical properties of selected native and coagulated human brain tissues in vitro in visible and near infrared spectral range. Phys. Med. Biol. 47(12), 2059–2073 (2002)

    Article  Google Scholar 

  17. W.-F. Cheong, S.A. Prahl, A.J. Welch, A review of the optical properties of biological tissues. IEEE J. Quant. Electron. 26(12), 2166–2185 (1990)

    Article  ADS  Google Scholar 

  18. A. Roggan, K. Dörschel, O. Minet, D. Wolff, G. Müller, The optical properties of biological tissue in the near infrared wavelength range – review and measurements, in Laser-Induced Interstitial Thermotherapy, ed. by G. Müller, A. Roggan, (SPIE Press, Bellingham, 1995), pp. 10–44

    Google Scholar 

  19. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Comparative study of the optical properties of colon mucosa and colon precancerous polyps between 400 and 1000 nm, in Dynamics and Fluctuations in Biomedical Photonics XIV, Proc. SPIE, ed. by V. V. Tuchin, K. V. Larin, M. J. Leahy, R. K. Wang, vol. 10063, (SPIE Press, Bellingham, 2017), p. 100631L

    Chapter  Google Scholar 

  20. I. Carneiro, S. Carvalho, R. Henrique, L.M. Oliveira, V.V. Tuchin, Optical properties of colorectal muscle in visible/NIR range, in Biophotonics: Photonic Solutions for Better Health Care VI, Proc. SPIE, ed. by J. Popp, V. V. Tuchin, F. S. Pavone, vol. 10685, (SPIE Press, Bellingham, 2018), p. 106853D

    Google Scholar 

  21. S.A. Prahl, M.J.C. van Gemert, A.J. Welch, Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt. 32(4), 559–568 (1993)

    Article  ADS  Google Scholar 

  22. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human sclera in spectral range 370–2500 nm. Opt. Spectrosc. 109(2), 197–204 (2010)

    Article  ADS  Google Scholar 

  23. A.N. Bashkatov, E.A. Genina, M.D. Kozintseva, V.I. Kochubey, S.Y. Gorofkov, V.V. Tuchin, Optical properties of peritoneal biological tissues in the spectral range of 350–2500 nm. Opt. Spectrosc. 120(1), 1–8 (2016)

    Article  ADS  Google Scholar 

  24. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.S. Rubtsov, E.A. Kolesnikova, V.V. Tuchin, Optical properties of human colon tissues in the 350–2500 spectral range. Quant. Electron. 44(8), 779–784 (2014)

    Article  ADS  Google Scholar 

  25. M. Firbank, M. Hiraoka, M. Essenpreis, D.T. Delpy, Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 38(4), 503–510 (1993)

    Article  Google Scholar 

  26. D.C. Sordillo, L.A. Sordillo, P.P. Sordillo, L. Shi, R. Alfano, Short wavelength infrared optical windows for evaluations of benign and malignant tissues. J. Biomed. Opt. 22(4), 045002-1–045002-7 (2017)

    Article  ADS  Google Scholar 

  27. L. Shi, A. Rodriguez-Contreras, R. Alfano, Transmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 9(1–2), 38–43 (2016)

    Article  Google Scholar 

  28. L. Oliveira, The effect of optical clearing in the optical properties of skeletal muscle, PhD thesis, FEUP edições, Porto, Portugal, 2014

    Google Scholar 

  29. A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Measurement of glucose diffusion coefficients in human tissues, Chapter 19, in Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V. V. Tuchin, (Taylor & Francis Group LLC, CRC Press, London, 2009), pp. 87–621

    Google Scholar 

  30. R.C. Haskell, F.D. Carlson, P.S. Blank, Form birefringence of muscle. Biophys. J. 56, 401–413 (1989)

    Article  Google Scholar 

  31. L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Optical characterization and composition of abdominal wall muscle from rat. Opt. Laser Eng. 47(6), 667–672 (2009)

    Article  Google Scholar 

  32. V.V. Tuchin, Tissue optics and photonics: biological tissue structures. J. Biomed. Phot. Eng. 1(1), 3–21 (2015)

    Article  Google Scholar 

  33. V.V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, 2006)

    Google Scholar 

  34. D.W. Leonard, K.M. Meek, Refractive indices of the collagen fibrils and extracellular material of the corneal stroma. Biophys. J. 72(3), 1382–1387 (1997)

    Article  ADS  Google Scholar 

  35. K.M. Meek, S. Dennis, S. Khan, Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells. Biophys. J. 85(4), 2205–2212 (2003)

    Article  Google Scholar 

  36. K.M. Meek, D.W. Leonard, C.J. Connon, S. Dennis, S. Khan, Transparency, swelling and scarring in the corneal stroma. Eye 17(8), 927–936 (2003)

    Article  Google Scholar 

  37. O. Zhernovaya, O. Sydoruk, V.V. Tuchin, A. Douplik, The refractive index of human hemoglobin in the visible range. Phys. Med. Biol. 56(13), 4013–4021 (2011)

    Article  Google Scholar 

  38. R.F. Reinoso, B.A. Telfer, M. Rowland, Tissue water content in rats measured by desiccation. J. Pharmacol. Toxicol. Methods 38(2), 87–92 (1997)

    Article  Google Scholar 

  39. L. Oliveira, A. Lage, M. Pais Clemente, V.V. Tuchin, Rat muscle opacity decrease due to the osmosis of a simple mixture. J. Biomed. Opt. 15(5), 055004-1–055004-9 (2010)

    Article  ADS  Google Scholar 

  40. M. Daimon, A. Masumura, Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46, 3811–3820 (2007)

    Article  ADS  Google Scholar 

  41. W.L. Bragg, A.B. Pippard, The form birefringence of macromolecules. Acta Cryst 6, 865–867 (1953)

    Article  Google Scholar 

  42. R. Graaff, J.G. Aarnoudse, J.R. Zijp, P.M.A. Sloot, F.F. de Mul, J. Greve, M.H. Koelink, Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations. Appl. Opt. 31(10), 1370–1376 (1992)

    Article  ADS  Google Scholar 

  43. R. Splinter, B.A. Hooper, An Introduction to Biomedical Optics (Taylor and Francis, New York, 2007)

    Google Scholar 

  44. A.Y. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin, Recent progress in tissue clearing for spectroscopic application. Spectrochim. Acta A Mol Biomol. Spectrosc. 197, 216–229 (2018)

    Article  ADS  Google Scholar 

  45. E.A. Genina, A.N. Bashkatov, Y.P. Sinichkin, I.Y. Yanina, V.V. Tuchin, Optical clearing of biological tissues: prospects of application in medical diagnosis and phototherapy. J. Biomed. Photon. Eng. 1(1), 22–58 (2015)

    Article  Google Scholar 

  46. F. S. Pavone, P. J. Campagnola (eds.), Second Harmonic Generation Imaging (CRC Press, Boca Raton, 2014)

    Google Scholar 

  47. V. V. Tuchin (Ed.). Handbook of Optical Biomedical Diagnostics. 2nd ed., vols. 1 & 2, SPIE Press, Bellingham, 2016

    Google Scholar 

  48. A.F. Fercher, J.D. Briers, Flow visualization by means of single-exposure speckle photography. Opt. Commun. 37(5), 326–330 (1981)

    Article  ADS  Google Scholar 

  49. M.E. Darvin, H. Richter, Y.J. Zhu, M.C. Meinke, F. Knorr, S.A. Gonchukov, K. Koenig, J. Lademann, Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging. Quant. Electron. 44(7), 646–651 (2014)

    Article  ADS  Google Scholar 

  50. M. Ulricht, M. Klemp, M.E. Darvin, K. Konig, J. Lademann, M.C. Meinke, In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph. J. Biomed. Opt. 18(6), 061229 (2013)

    Article  ADS  Google Scholar 

  51. O.A. Smolyanskaya, I.J. Schelkanova, M.S. Kulya, E.L. Odlyanitskiy, I.S. Goryachev, A.N. Tcypkin, Y.V. Grachev, Y.G. Toropova, V.V. Tuchin, Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods. Biomed. Opt. Express 9(3), 1198–1215 (2018)

    Article  Google Scholar 

  52. L. Lim, B. Nichols, N. Rajaram, J.W. Tunnell, Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements. J. Biomed. Opt. 16(1), 011012 (2011)

    Article  ADS  Google Scholar 

  53. B. Broadbent, J. Tseng, R. Kast, T. Noh, M. Brusatori, S.N. Kalkanis, G.W. Auner, Shining light on neurosurgery diagnostics using Raman spectroscopy. J. Neurooncol. 130(1), 1–9 (2016)

    Article  Google Scholar 

  54. Z. Deng, J. wang, Q. Ye, T. Sun, W. Zhou, J. Mei, C. Zhang, J. Tian, Determination of continuous complex refractive dispersion of biotissue based on internal reflection. J. Biomed. Opt. 21(1), 015003 (2016)

    Article  ADS  Google Scholar 

  55. H. Ding, J.Q. Lu, W.A. Wooden, P.J. Kragel, X.-H. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys. Med. Biol. 51(6), 1479–1489 (2006)

    Article  Google Scholar 

  56. H. Li, S. Xie, Measurement method of the refractive index of biotissue by total internal reflection. Appl. Opt. 35(10), 1793–1795 (1996)

    Article  ADS  Google Scholar 

  57. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Water content and scatterers dispersion evaluation in colorectal tissues. J. Biomed. Phot. Eng. 3(4), 040301-1–040301-10 (2017)

    Google Scholar 

  58. A. Vogel, C. Dlugos, R. Nuffer, R. Birngruber, Optical properties of human sclera, and their consequences for transscleral laser applications. Laser. Surg. Med. 11(4), 331–340 (1991)

    Article  Google Scholar 

  59. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, G. Müller, Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 4(1), 36–46 (1999)

    Article  ADS  Google Scholar 

  60. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D. Appl. Phys. 38(15), 2543–2555 (2005)

    Article  ADS  Google Scholar 

  61. D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, V.V. Tuchin, Ex vivo optical measurements of glucose diffusion kinetics in native and diabetic mouse skin. J. Biophotonics 8(4), 332–346 (2015)

    Article  Google Scholar 

  62. D.K. Tuchina, A.N. Bashkatov, A.B. Bucharskaya, E.A. Genina, V.V. Tuchin, Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes. J. Biomed. Phot. Eng. 3(2), 020302 (2017)

    Article  Google Scholar 

  63. S. Carvalho, N. Gueiral, E. Nogueira, R. Henrique, L. Oliveira, V.V. Tuchin, Glucose diffusion in colorectal mucosa: a comparative study between normal and cancer tissues. J. Biomed. Opt. 22(9), 091506 (2017)

    Article  ADS  Google Scholar 

  64. L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, Diffusion characteristics of ethylene glycol in skeletal muscle. J. Biomed. Opt. 20(5), 051019 (2015)

    Article  ADS  Google Scholar 

  65. L. Oliveira, M.I. Carvalho, E. Nogueira, V.V. Tuchin, The characteristic time of glucose diffusion measured for muscle tissue at optical clearing. Laser Phys. 23(7), 075606 (2013)

    Article  ADS  Google Scholar 

  66. D.A. Boas, A fundamental limitation of linearized algorithms for diffuse optical tomography. Opt. Express 1(13), 404–413 (1997)

    Article  ADS  Google Scholar 

  67. C.L. Smithpeter, A.K. Dunn, A.J. Welch, R. Richards-Kortum, Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37(13), 2749–2754 (1998)

    Article  ADS  Google Scholar 

  68. V.V. Tuchin, I.L. Maksimova, D.A. Zimnyakov, I.L. Kon, A.H. Mavlutov, A.A. Mishin, Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2(4), 401–417 (1997)

    Article  ADS  Google Scholar 

  69. I. Carneiro, S. Carvalho, R. Henrique, L. Oliveira, V.V. Tuchin, Moving tissue spectral window to the deep-UV via optical clearing. J. Biophot. (2019). https://doi.org/10.1002/jbio.201900181

  70. T. Fabritius, E. Alarousu, T. Prykäri, J. Hast, R. Myllylä, Characterization of optically cleared paper by optical coherence tomography. Quant. Electron. 36(2), 181–187 (2006)

    Article  ADS  Google Scholar 

  71. W. Spalteholz, Über das Durchsichtigmachen von menschlichen unde tierischen Präparaten und seine theoretichen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirszel, Leipzig, Germany, 1911)

    Google Scholar 

  72. W. Spalteholz, Über das Durchsichtigmachen von menschlichen unde tierischen Präparaten und seine theoretichen Bedingungen, nebst Anhang: Über Knochenfärbung (S. Hirszel, Leipzig, Germany, 1914)

    Google Scholar 

  73. D.S. Richardson, J.W. Lichtman, Clarifying tissue clearing. Cell 162(2), 246–257 (2015)

    Article  Google Scholar 

  74. M. Aswendt, M. Schwarz, W.M. Abdelmoula, J. Dijkstra, S. Dedeurwaerdere, Whole-brain microscopy meets in vivo neuroimaging: techniques, benefits, and limitations. Mol. Imaging Biol. 19(1), 1–9 (2017)

    Article  Google Scholar 

  75. A. Azaripour, T. Lagerweij, C. Scharfbillig, A.E. Jadczac, B. Willershausen, C.J. Van Noorden, A survey of clearing techniques for 3D imaging of tissues with special reference to connective. Prog. Histochem. Cytochem. 51(2), 9–23 (2016)

    Article  Google Scholar 

  76. R.W. Cumley, J.F. Crow, A.B. Griffen, Clearing specimens for the demonstration of bone. Biotech. Histochem. 14, 7–11 (1939)

    Google Scholar 

  77. E.A. Genina, A.N. Bashkatov, V.V. Tuchin, Tissue optical immersion clearing. Expert Rev. Med. Dev. 7(6), 825–842 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, L.M.C., Tuchin, V.V. (2019). Tissue Optics. In: The Optical Clearing Method. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-33055-2_1

Download citation

Publish with us

Policies and ethics