Skip to main content

Evidence-Based Analysis of Neurotransmitter Modulation by Gut Microbiota

  • Conference paper
  • First Online:
Health Information Science (HIS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11837))

Included in the following conference series:

Abstract

Gut microbiota that lives in the human gastrointestinal tract impacts on the mental illness through the neurotransmitter-mediated pathway. It’s well known that the imbalance of neurotransmitter leads to mental problems. The association between gut microbiota and neurotransmitter needs to be explored in depth. In this paper, we aim at identifying the quality evidence of neurotransmitter modulation by gut microbiota. We use evidence-based medical analysis to characterize the relevant articles to five levels in terms of the strength and reliability of evidence. Thirty-four articles are identified to evaluate their evidence. Gut microbiota not only produces neurotransmitters directly but also modulates neurotransmitters level via metabolism pathways. Also, the growth of some gut microbiota can be counter-regulated by neurotransmitters. This paper provides a comprehensive picture of the association between gut microbiota and neurotransmitter, which give researchers an insight into neurotransmitter modulation by gut microbiota.

This work was partially supported by the China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agus, A., Planchais, J., Sokol, H.: Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23(6), 716–724 (2018)

    Article  Google Scholar 

  2. Asano, Y., et al.: Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 303(11), G1288–G1295 (2012)

    Article  Google Scholar 

  3. Barcik, W., Wawrzyniak, M., Akdis, C.A., O’Mahony, L.: Immune regulation by histamine and histamine-secreting bacteria. Curr. Opin. Immunol. 48, 108–113 (2017)

    Article  Google Scholar 

  4. Barrett, E., Ross, R., O’toole, P., Fitzgerald, G., Stanton, C.: \(\gamma \)-aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113(2), 411–417 (2012)

    Article  Google Scholar 

  5. Bravo, J.A., et al.: Ingestion of lactobacillus strain regulates emotional behavior and central gaba receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. 108(38), 16050–16055 (2011)

    Article  Google Scholar 

  6. Carabotti, M., Scirocco, A., Maselli, M.A., Severi, C.: The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 28(2), 203 (2015)

    Google Scholar 

  7. Cho, Y.R., Chang, J.Y., Chang, H.C.: Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17(1), 104–109 (2007)

    Google Scholar 

  8. Cowen, P.J., Browning, M.: What has serotonin to do with depression? World Psychiatry 14(2), 158–160 (2015)

    Article  Google Scholar 

  9. De Vadder, F., et al.: Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. 115(25), 6458–6463 (2018)

    Article  Google Scholar 

  10. Diaz, M., et al.: Isolation and typification of histamine-producing Lactobacillus vaginalis strains from cheese. Int. J. Food Microbiol. 215, 117–123 (2015)

    Article  Google Scholar 

  11. Foster, J.A., Neufeld, K.A.M.: Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36(5), 305–312 (2013)

    Article  Google Scholar 

  12. Freestone, P.P., Haigh, R.D., Lyte, M.: Specificity of catecholamine-induced growth in Escherichia coli O157: H7, Salmonella enterica and Yersinia enterocolitica. FEMS Microbiol. Lett. 269(2), 221–228 (2007)

    Article  Google Scholar 

  13. Ge, X., Pan, J., Liu, Y., Wang, H., Zhou, W., Wang, X.: Intestinal crosstalk between microbiota and serotonin and its impact on gut motility. Curr. Pharm. Biotechnol. 19(3), 190–195 (2018)

    Article  Google Scholar 

  14. Gezginc, Y., Akyol, I., Kuley, E., Özogul, F.: Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem. 138(1), 655–662 (2013)

    Article  Google Scholar 

  15. Gross, R.A., Johnston, K.C.: Levels of evidence: taking neurology® to the next level. Neurology 72(1), 8–10 (2009)

    Article  Google Scholar 

  16. Hegde, M., Wood, T.K., Jayaraman, A.: The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl. Microbiol. Biotechnol. 84(4), 763 (2009)

    Article  Google Scholar 

  17. Higley, M.J., Picciotto, M.R.: Neuromodulation by acetylcholine: examples from schizophrenia and depression. Curr. Opin. Neurobiol. 29, 88–95 (2014)

    Article  Google Scholar 

  18. Huang, Z., Hu, Q., ten Teije, A., van Harmelen, F.: Identifying evidence quality for updating evidence-based medical guidelines. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A. (eds.) KR4HC 2015. LNCS (LNAI), vol. 9485, pp. 51–64. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26585-8_4

    Chapter  Google Scholar 

  19. Huang, Z., Yang, J., van Harmelen, F., Hu, Q.: Constructing knowledge graphs of depression. In: Siuly, S., et al. (eds.) HIS 2017. LNCS, vol. 10594, pp. 149–161. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69182-4_16

    Chapter  Google Scholar 

  20. Jenkins, T., Nguyen, J., Polglaze, K., Bertrand, P.: Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8(1), 56 (2016)

    Article  Google Scholar 

  21. Jianguo, L., Xueyang, J., Cui, W., Changxin, W., Xuemei, Q.: Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 9(1), 40 (2019)

    Article  Google Scholar 

  22. Kim, S.H., Ben-Gigirey, B., Barros-Velazquez, J., Price, R.J., An, H.: Histamine and biogenic amine production by Morganella morganii isolated from temperature-abused albacore. J. Food Prot. 63(2), 244–251 (2000)

    Article  Google Scholar 

  23. Kleiman, S.C., et al.: The intestinal microbiota in acute anorexia nervosa and during renourishment: relationship to depression, anxiety, and eating disorder psychopathology. Psychosom. Med. 77(9), 969 (2015)

    Article  Google Scholar 

  24. Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., Kimura, T.: Production of \(\gamma \)-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 22(6), 497–504 (2005)

    Article  Google Scholar 

  25. Kunze, W.A., et al.: Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J. Cell. Mol. Med. 13(8b), 2261–2270 (2009)

    Article  Google Scholar 

  26. Lan, G., Benito-Picazo, J., Roijers, D.M., Domínguez, E., Eiben, A.: Real-time robot vision on low-performance computing hardware. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1959–1965, November 2018

    Google Scholar 

  27. Lan, G., Jelisavcic, M., Roijers, D.M., Haasdijk, E., Eiben, A.E.: Directed locomotion for modular robots with evolvable morphologies. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 476–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_38

    Chapter  Google Scholar 

  28. Liu, W.H., et al.: Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav. Brain Res. 298, 202–209 (2016)

    Article  Google Scholar 

  29. Lukić, I., et al.: Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl. Psychiatry 9(1), 133 (2019)

    Article  Google Scholar 

  30. Luscher, B., Shen, Q., Sahir, N.: The gabaergic deficit hypothesis of major depressive disorder. Mol. Psychiatry 16(4), 383 (2011)

    Article  Google Scholar 

  31. Lyte, M.: Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33(8), 574–581 (2011)

    Article  Google Scholar 

  32. Malikina, K., Shishov, V., Chuvelev, D., Kudrin, V., Oleskin, A.: Regulatory role of monoamine neurotransmitters in Saccharomyces cerevisiae cells. Appl. Biochem. Microbiol. 46(6), 620–625 (2010)

    Article  Google Scholar 

  33. Mandić, A.D., et al.: Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci. Rep. 9(1), 1177 (2019)

    Article  Google Scholar 

  34. Mayr, A., Hinterberger, G., Dierich, M., Lass-Flörl, C.: Interaction of serotonin with Candida albicans selectively attenuates fungal virulence in vitro. Int. J. Antimicrob. Agents 26(4), 335–337 (2005)

    Article  Google Scholar 

  35. McGaughey, K.D., et al.: Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety-and depressive-like behavior following social defeat in mice. Sci. Rep. 9(1), 3281 (2019)

    Article  Google Scholar 

  36. Mittal, R., et al.: Neurotransmitters: the critical modulators regulating gut-brain axis. J. Cell. Physiol. 232(9), 2359–2372 (2017)

    Article  Google Scholar 

  37. Moret, C., Briley, M.: The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat. 7(Suppl 1), 9 (2011)

    Google Scholar 

  38. Moret, C., Briley, M.: The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat. 2011(7), 9–13 (2011)

    Google Scholar 

  39. Mu, Q., Tavella, V., Luo, X.M.: Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 9, 757 (2018)

    Article  Google Scholar 

  40. Naseribafrouei, A., et al.: Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil. 26(8), 1155–1162 (2014)

    Article  Google Scholar 

  41. Nuss, P.: Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat. 11, 165 (2015)

    Google Scholar 

  42. Oleskin, A., Kirovskaia, T., Botvinko, I., Lysak, L.: Effect of serotonin (5-hydroxytryptamine) on the growth and differentiation of microorganisms. Mikrobiologiia 67(3), 305–312 (1998)

    Google Scholar 

  43. Ă–zoÄŸul, F.: Production of biogenic amines by Morganella morganii, Klebsiella pneumoniae and Hafnia alvei using a rapid HPLC method. Eur. Food Res. Technol. 219(5), 465–469 (2004)

    Article  Google Scholar 

  44. Ă–zoÄŸul, F., Kuley, E., Ă–zoÄŸul, Y., Ă–zoÄŸul, Ä°.: The function of lactic acid bacteria on biogenic amines production by food-borne pathogens in arginine decarboxylase broth. Food Sci. Technol. Res. 18(6), 795–804 (2012)

    Article  Google Scholar 

  45. Pan, J.X., et al.: Absence of gut microbiota during early life affects anxiolytic behaviors and monoamine neurotransmitters system in the hippocampal of mice. J. Neurol. Sci. 400, 160–168 (2019)

    Article  Google Scholar 

  46. Pokusaeva, K., et al.: GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 29(1), e12904 (2017)

    Article  Google Scholar 

  47. Scheffer, J., König, W., Hacker, J., Goebel, W.: Bacterial adherence and hemolysin production from Escherichia coli induces histamine and leukotriene release from various cells. Infect. Immun. 50(1), 271–278 (1985)

    Google Scholar 

  48. Schretter, C.E., et al.: A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563(7731), 402 (2018)

    Article  Google Scholar 

  49. Shishov, V., Kirovskaya, T., Kudrin, V., Oleskin, A.: Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl. Biochem. Microbiol. 45(5), 494–497 (2009)

    Article  Google Scholar 

  50. Siragusa, S., De Angelis, M., Di Cagno, R., Rizzello, C., Coda, R., Gobbetti, M.: Synthesis of \(\gamma \)-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl. Environ. Microbiol. 73(22), 7283–7290 (2007)

    Article  Google Scholar 

  51. Stanaszek, P.M., Snell, J.F., O’Neill, J.J.: Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Appl. Environ. Microbiol. 34(2), 237–239 (1997)

    Google Scholar 

  52. Strakhovskaia, M., Ivanova, E., Fraĭnkin, G.: Stimulatory effect of serotonin on the growth of the yeast Candida guilliermondii and the bacterium Streptococcus faecalis. Mikrobiologiia 62(1), 46–49 (1993)

    Google Scholar 

  53. Strandwitz, P.: Neurotransmitter modulation by the gut microbiota. Brain Res. 1693, 128–133 (2018)

    Article  Google Scholar 

  54. Strandwitz, P., et al.: GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4(3), 396 (2019)

    Article  Google Scholar 

  55. Su, Y.C., Wang, J.J., Lin, T.T., Pan, T.M.: Production of the secondary metabolites \(\gamma \)-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 30(1), 41–46 (2003)

    Article  Google Scholar 

  56. Treasure, J., Eid, L.: Eating disorder animal model. Curr. Opin. Psychiatr. 32 (2019)

    Article  Google Scholar 

  57. Tsavkelova, E., Botvinko, I., Kudrin, V., Oleskin, A.: Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl. Biochem. Proc. Acad. Sci. USSR Biochem. Sect. 372(1–6), 115 (2000)

    Google Scholar 

  58. Valles-Colomer, M., et al.: The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623 (2019)

    Article  Google Scholar 

  59. Wirz-Justice, A., Benedetti, F.: Perspectives in affective disorders: clocks and sleep. Eur. J. Neurosci. 1–20 (2019)

    Google Scholar 

  60. Wu, C.H., Hsueh, Y.H., Kuo, J.M., Liu, S.J.: Characterization of a potential probiotic Lactobacillus brevis RK03 and efficient production of \(\gamma \)-aminobutyric acid in batch fermentation. Int. J. Mol. Sci. 19(1), 143 (2018)

    Article  Google Scholar 

  61. Yang, S.Y., et al.: Production of \(\gamma \)-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 34(3), 473–478 (2008)

    Google Scholar 

  62. Yano, J.M., et al.: Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2), 264–276 (2015)

    Article  Google Scholar 

  63. Zheng, P., et al.: Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21(6), 786 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhisheng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, T., Huang, Z. (2019). Evidence-Based Analysis of Neurotransmitter Modulation by Gut Microbiota. In: Wang, H., Siuly, S., Zhou, R., Martin-Sanchez, F., Zhang, Y., Huang, Z. (eds) Health Information Science. HIS 2019. Lecture Notes in Computer Science(), vol 11837. Springer, Cham. https://doi.org/10.1007/978-3-030-32962-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32962-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32961-7

  • Online ISBN: 978-3-030-32962-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics