Skip to main content

Assessing Crop Yield and Risk: A New Method for Calculating Insurance Based on Rainfall

  • Conference paper
  • First Online:
Sustainable Development and Social Responsibility—Volume 1

Abstract

The aim of this paper is to explore a new method for data analysis that could be used for insurance calculations. In many agricultural nations rainfall per year and per annual quarter are good indications of the productive capacity in farmland. Essentially, there is a curvilinear relationship between rain and crop yield. The goldilocks zone varies by region and product, however, every farmer and minister of agriculture fears drought and/or flood. A Copula Quantile Regression (CQR) approach provides a novel approach to estimate the dependence of a function of the yield with respect to climate factors. This is then combined with quantile regression for nonlinear optics. This approach utilizes “Big Data” modeling and analytics to draw upon the wealth of information contained in the RICA databases. This study assesses variables such as the share of land covered by a sprinkler system, altitude, fragmentation of land, production intensity, rain, and temperature. It was found that this method provides a simpler and more flexible approach to analyze complex ecological, geological, economic, and sociological factors that impact business and commerce through risk management, strategic planning, and insurance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderman, H., & Haque, T. (2007). Insurance against covariate shocks: The role of index-based insurance in social protection in low-income countries of Africa. World Bank Working Paper No. 95.

    Google Scholar 

  • Antle, J. (1987). Econometric estimation of producers’ risk attitudes. American Journal of Agricultural Economics, 69(3), 509–522.

    Article  Google Scholar 

  • Arias, O. V., Garrido, A., Villeta, M., & Tarquis, A. M. (2018). Homogenisation of a soil properties map by principal component analysis to define index agricultural insurance policies. Geoderma, 311, 149–158.

    Article  Google Scholar 

  • Barnett, B. J., & Mahul, O. (2007). Weather index insurance for agriculture and rural areas in lower-income countries. American Journal of Agricultural Economics, 89(5), 1241–1247.

    Article  Google Scholar 

  • Barnett, T. P., Pierce, D. W., Hidalgo, H. G., Bonfils, C., Santer, B. D., Das, T., Bala, G., Wood, A. W., Nozawa, T., Mirin, A. A., Cayan, D. R., & Dettinger, M. D. (2008). Human-induced changes in the hydrology of the Western United States. Science. 319(5866), 1080–1083.

    Google Scholar 

  • Berg, E., & Schmitz, B. (2008). Weather-based instruments in the context of whole-farm risk management. Agricultural Finance Review, 68(1), 119–133.

    Article  Google Scholar 

  • Birthal, P., Roy, D., & Negi, D. (2015). Assessing the impact of crop diversification on farm poverty in India. World Development, 72(10), 1016.

    Google Scholar 

  • Bouyé, E., & Salmon, M. (2013). Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets. In Copulae and multivariate probability distributions in finance (pp. 125–154). Routledge.

    Google Scholar 

  • Chowdhury, S. P., Uhl, J., Grosch, R., Alqueres, S., Pittroff, S., Dietel, K., Schmitt-Kopplin, P., Borriss, R., & Hartmann, A. (2016). (Chowdhury et al 2015).

    Google Scholar 

  • Clover, A. T., & Nieuwoudt, W. L. (2003). An economic evaluation of area yield insurance for small-scale cane growers. Development Southern Africa, 20, 293–305.

    Google Scholar 

  • Dalhaus, T., Musshoff, O., & Finger, R. (2018). Phenology information contributes to reduce temporal basis risk in agricultural weather index insurance. Scientific reports, 8(1), 46.

    Article  Google Scholar 

  • Faccia, A. (2012). Analisi dei dati RICA finalizzati all’approfondimento del tema della gestione del rischio in agricoltura. Misurazione delle performance finanziarie e patrimoniali delle aziende agrarie e relativa definizione di un modello di rating.

    Google Scholar 

  • Finger, D., Wüest, A., & Bossard, P. (2013). Effects of oligotrophication on primary production in peri-alpine lakes. Water Resources Research, 49, 4700–4710.

    Article  CAS  Google Scholar 

  • Glauber, J. W. (2004). Crop insurance reconsidered. American Journal of Agricultural Economics, 86(5), 1179–1195.

    Article  Google Scholar 

  • Groom, M. J., Gray, E. M., & Patricia A. T. (2008). Biofuels and biodiversity: principles for creating better policies for biofuel production. Conservation Biology. 22(3), 602–609.

    Google Scholar 

  • Hazell, P. B. (1992). The appropriate role of agricultural insurance in developing countries. Journal of International Development, 4(6), 567–581.

    Article  Google Scholar 

  • Hubert, L. J., Golledge, R. G., & Costanzo, C. M. (2010) Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis.

    Google Scholar 

  • Kapphan, I., Calanca, P., & Holzkämper, A. (2012). Climate change, weather insurance design and hedging effectiveness. The Geneva Papers on Risk and Insurance—Issues and Practice.

    Google Scholar 

  • Khan, M., & Watts, R. L. (2009). Estimation and empirical properties of a firm-year measure of accounting conservatism. Journal of Accounting and Economics, 48(2-3), 132–150.

    Article  Google Scholar 

  • Koenker, R. W., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50.

    Article  Google Scholar 

  • Kumbhakar, S., & Tveterås, R. (2003). Risk preferences, production risk and firm heterogeneity. Scandinavian Journal of Economics. 105(2), 275–293.

    Google Scholar 

  • Lobell, D. B., & Burke, M. (Eds.). (2010). Climate change and food security. Adapting Agriculture to a Warmer World.

    Google Scholar 

  • Mahul, O., & Stutley, C. J. (2010). Government support to agricultural insurance: challenges and options for developing countries. The World Bank.

    Google Scholar 

  • Moschini, G., & Hennessy, D. (1999). Uncertainty, risk aversion and risk management for agricultural producers. Economic Staff Paper Series. 315.

    Google Scholar 

  • Mullins, J., Zivin, J. G., Cattaneo, A., Paolantonio, A., & Cavatassi, R. (2018). The adoption of climate smart agriculture: The role of information and insurance under climate change. In Climate Smart Agriculture (pp. 353–383). Cham: Springer.

    Google Scholar 

  • Olalekan, A., & Adeyinka, S. (2013). Capital adequacy and banks’ profitability: an empirical evidence from Nigeria. American International Journal of Contemporary Research. 3(10).

    Google Scholar 

  • Piearce, T. G. (1984). Earthworm populations in soils disturbed by trampling. Biological Conservation, 29, 241–252.

    Article  Google Scholar 

  • Počuča, M., Petrović, Z., & Mrkšić, D. (2018). Insurance in agriculture. Economics of Agriculture, 60(1), 163–177.

    Google Scholar 

  • Poudel, M. P., Chen, S. E., & Huang, W. C. (2018). Pricing of rainfall index insurance for rice and wheat in Nepal.

    Google Scholar 

  • Schlenker, W., & Roberts, M. (2006). Nonlinear effects of weather on crop yields: Implications for climate change. Review of Agricultural Economics. 28.

    Google Scholar 

  • Sidibé, Y., Foudi, S., Pascual, U., & Termansen, M. (2018). Adaptation to climate change in rainfed agriculture in the global south: soil biodiversity as natural insurance. Ecological Economics, 146, 588–596.

    Article  Google Scholar 

  • Swinton, S., & King, R. (1991). Evaluating robust regression techniques for detrending crop yield data with nonnormal errors. American Journal of Agricultural Economics, 73, 446. https://doi.org/10.2307/1242729.

    Article  Google Scholar 

  • Valdés, A., Hazell, P. B. R., & Pomareda, C. (1986). Crop insurance for agricultural development: Issues and experience. IICA Biblioteca Venezuela.

    Google Scholar 

  • Vedenov, D., & Barnett, B. (2004). Efficiency of weather derivatives as primary crop insurance instruments. Journal of Agricultural and Resource Economics, 29(3), 387–403.

    Google Scholar 

  • Wang, N., Wang, Z. P., Liang, X. L., Weng, J. F., Lv, X. L., Zhang, D. G., et al. (2016). Identification of loci contributing to maize drought tolerance in a genome-wide association study. Euphytica, 210(2), 165–179.

    Article  CAS  Google Scholar 

  • Zheng, Q., Wang, H. H., & Shi, Q. (2008). Estimating multivariate yield distributions using nonparametric methods. American Agricultural Economics Association Annual Meeting, Orlando, FL, July 27–29, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Darville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capitanio, F., Hannoon, A., Darville, J., Faccia, A. (2020). Assessing Crop Yield and Risk: A New Method for Calculating Insurance Based on Rainfall. In: Mateev, M., Nightingale, J. (eds) Sustainable Development and Social Responsibility—Volume 1. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-32922-8_5

Download citation

Publish with us

Policies and ethics