Skip to main content

Radioactive Residues of Uranium Ore Mining Requiring Special Monitoring

  • Chapter
  • First Online:
Book cover Disposal of All Forms of Radioactive Waste and Residues
  • 565 Accesses

Abstract

The following explanations relate to processing residues and their storage in various locations (tailings ponds) as a result of SDAG Wismut’s uranium mining operations in Saxony and Thuringia. These are possibly the largest uranium mill tailings ponds in the world, so that they can be described as reference objects. Comparisons are made with remediation programs and legal requirements in the USA, so that the reader can make comparisons with corresponding site specific projects and thus one may also acquire ideas for options for site specific solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specified limits by mining committed in North American mining industry see [2]; in the following becomes summarized TENORM with NORM to NORM.

  2. 2.

    All data here in metric tons, 1 tonne approx. 1.103 short ton.

  3. 3.

    Of which approx. 190,000 metric tons in the Collorado Plateau; https://nepis.epa.gov/Exe/ZyPDF.cgi/910088OG.PDF?Dockey=910088OG.PDF.

  4. 4.

    Soviet stock corporation (SAG).

  5. 5.

    Now with a Soviet and a German general director (CEO).

  6. 6.

    In the end, Germany will have spent around 30 billion euros on production and renovation.

  7. 7.

    “Wismut-Law”—Law on the Agreement of 16 May 1991 between the Government of the Federal Republic of Germany and the Government of the Union of Soviet Socialist Republics on the termination of the activities of the Soviet-German stock corporation Wismut.

  8. 8.

    Storages for the uranium ore processing residues (Uranium mill tailings ponds) were designated by the SDAG Wismut Industrial settlement plants (IAA).

  9. 9.

    The SDAG Wismut designated all components of the mining and processing plant as objects with a number, e.g. Shaft 371, this was the main production shaft of the deposit. This was part of the obfuscation of the activity of the SDAG Wismut in the GDR.

  10. 10.

    By this line-up the SAG Wismut was initially not interested. There took place an plundering of natural resources. Only in later years (SDAG Wismut) was the ore processing concentrated at two sites (Crossen and Seelingstädt).

  11. 11.

    Sandstones are also aquifers.

  12. 12.

    Nearby, there is another smaller uranium mill storage Dänkritz II, which does not fall under the Wismut law.

  13. 13.

    This is unusual for uranium tailings, but is the rule for gold tailings.

  14. 14.

    The SDAG Wismut has often no done remediation works for the decommissioned Tailings ponds from the period 1945–1963.

  15. 15.

    Particularly in sparsely populated regions of the USA, attempts were made to leave information on the hazard potential by means of appropriate information on monuments at the closure structure, and thus available even for periods for which administrative measures are no longer effective. This is intended in, particular, to prevent unintentional human intrusion into the tailings (“human intrusion scenario”).

  16. 16.

    The proof must still be furnished, however, since the periods of experience are still too short.

  17. 17.

    According to current knowledge.

  18. 18.

    Here, the former name for the Pöltzschbach (Lerchenbach) was chosen. But the Culmitzsch or “Culmitzsch creek” is no longer a geographical term today.

  19. 19.

    The weighted mean uranium concentration Unat in the pore water of the uranium mill tailings ponds of the SDAG Wismut in the Culmitzsch plain in Table 5.5 is 4.98 mg/l.

  20. 20.

    professional association of raw materials and chemical industry (RCI).

  21. 21.

    Commercial employers’ liability insurance associations (professional associations) are the statutory accident insurance providers for companies in the German private sector and their employees.

  22. 22.

    Operating Base Earthquake (OBE): is used to demonstrate the serviceability and durability of the tailings dam. The tailings dam must withstand the OBE without restrictions on use (earthquake case 1).

  23. 23.

    Maximum Considered Earthquake (MCE): design earthquake is the design case for which the safety of tailings dam must be proven. 10,000-year event (return period); see ICOLD Bulletin 82. In the newer version of DIN 19,700 (new), a return period of 2475 a is specified for the safe shutdown earthquake (SSE)—(design earthquake).

  24. 24.

    The radioactive water from the drainage of the tailings body is collected, and decontaminated in a water treatment plant so that it can be discharged into the receiving water.

References

  1. RICHTLINIE 2013/59/EURATOM DES RATES vom 5. Dezember 2013: zur Festlegung grundlegender Sicherheitsnormen für den Schutz vor den Gefahren einer Exposition gegenüber ionisierender Strahlung und zur Aufhebung der Richtlinien 89/618/Euratom, 90/641/Euratom, 6/29/Euratom, 97/43/Euratom und 2003/122/Euratom

    Google Scholar 

  2. Nuclear Energy Agency and International Atomic Energy Agency: Uranium 2016: Resources, Production and Demand; © OECD 2016; NEA No. 7301

    Google Scholar 

  3. NAS 1999a—National Academy of Sciences. Evaluation of Guidelines for Exposures to Technologically Enhanced Naturally Occurring Radioactive Materials. Washington, DC: National Academy Press, 1999.

    Google Scholar 

  4. U.S. Nuclear Regulatory Commission; https://www.nrc.gov/reading-rm/doc-collections/fact-sheets/fs-uranium-recovery.html

  5. U.S. Energy Information Administration: Uranium Mill Sites under the UMTRA Project;

    Google Scholar 

  6. DOE/EIA-0592 Distribution Category UC-950: “Decommissioning of U.S. Uranium Production Facilities” February 1995

    Google Scholar 

  7. U.S. Environmental Protection Agency: Technical Report on Technologically Enhanced Naturally Occurring Radioactive Materials from Uranium Mining; Volume 1: Mining and Reclamation Background; Previously published on-line and printed as Vol. 1 of EPA 402-R-05-007, January 2006, Updated June 2007 and printed April 2008 as EPA 402-R-08-005

    Google Scholar 

  8. Environment Protection Agency: Abandoned Mine Site Characterization and Cleanup Handbook; EPA 910-B-00-001; August 2000

    Google Scholar 

  9. U.S. NRC: Uranium Mill Tailings; https://www.nrc.gov/waste/mill-tailings.html

  10. M. Lersow, H. Märten; Energiequelle Uran-Ressourcen, Gewinnung und Reichweiten im Blickwinkel der technologischen Entwicklung, Glückauf 144 (2008)3, S. 116–122, Essen

    Google Scholar 

  11. M.V. Hansen: World uranium resources; IAEA BULLETIN, VOL. 23, No.2

    Google Scholar 

  12. Lersow, M.: Energy Source Uranium – Resources, Production and Adequacy; Glueckauf Mining Reporter 153 (3): p. 286–302, June 2017

    Google Scholar 

  13. Status and Results of the WISMUT Environmental Remediation Project; Vienna 2006:

    Google Scholar 

  14. Wismut Bergbausanierung – Landschaften gestalten und erhalten; Herausgeber Bundesministerium für Wirtschaft und Energie (BMWi); Öffentlichkeitsarbeit; 11019 Berlin; Juli 2015

    Google Scholar 

  15. SSK: Die Strahlenexposition durch den Bergbau in Sachsen und Thüringen und deren Bewertung; Beratung vom: 13./14. Dezember 1990 Veröffentlicht in: – Veröffentlichungen der Strahlenschutzkommission, Band 21

    Google Scholar 

  16. Jack Caldwell and Lawrence Charlebois, Robertson GeoConsultants, December 2012; http://technology.infomine.com/reviews/PasteTailings/welcome.asp?view=full

  17. Tailings Paste Disposal – More than Water Recovery; http://www.westech-inc.com/blog-minerals/tailings-paste-disposal-more-than-water-recovery

  18. Steven G. Vick: Planning, Design, and Analysis of Tailings Dams, John Wiley & Sons, New York, 1983, 369 p., ISBN 0-471-89829-5

    Google Scholar 

  19. TLUG 2001: Die Sanierung der ehemaligen Uranerzbergwerke und –aufbereitungsanlagen in Ostthüringen, Teil 1: Grundwasserüberwachung während der Sanierung, Teil I; Herausgeber TLUG, 2001

    Google Scholar 

  20. A. T. Jakubick, M. Hagen (2000); Wismut Experience in Remediation of Uranium Mill Tailings Ponds; 2000 Kluwer Academic Publisher, p. 93–105

    Google Scholar 

  21. Kommentar zur Novellierung der Strahlenschutzverordnung (Fassung vom 9. März 2001); Hrsg.: Gesellschaft für Strahlenschutz e.V., 21.04.01

    Google Scholar 

  22. Wels, C., Robertson, A. MacG., and Jakubick, A.T. (2000): “A Review of Dry Cover Placement on Extremely Weak, Compressible Tailings”. Paper published in CIM Bulletin, Vol. 93, No. 1043, pp. 111–118, September 2000.

    Google Scholar 

  23. IAEA (2004); The long term stabilization of uranium mill tailings, Final report of a coordinated research project 2000–2004; IAEA-TECDOC-1403, August 2004

    Google Scholar 

  24. Steven G. Vick: Degrees of Belief: Subjective Probability and Engineering Judgment, Published January 1st 2002 by American Society of Civil Engineers, 455 p.; ISBN 0784405980 (ISBN13: 9780784405987)

    Google Scholar 

  25. Lersow, M.; Gellermann, R (2015).; Langzeitstabile, langzeitsichere Verwahrung von Rückständen und radioaktiven Abfällen – Sachstand und Beitrag zur Diskussion um Lagerung (Endlagerung); Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin · geotechnik 38 (2015), Heft 3, S. 173–192

    Google Scholar 

  26. Offizielle website Moab, Utah, UMTRA-project Moab; https://www.gjem.energy.gov/moab/documents/TransportationPlanRev11.pdf

  27. Moab UMTRA Project; http://www.grandcountyutah.net/257/Moab-UMTRA-Project

  28. Natural Resources Canada; http://www.nrcan.gc.ca/home

  29. M. Lersow (2010); Sichere und langzeitstabile Verwahrung von Tailings Ponds, insbesondere aus der Uranerzaufbereitung, Geotechnik 33 (2010) Nr. 4, S. 351–369, VGE Verlag GmbH, Essen

    Google Scholar 

  30. Nand, Davé, Disposal of Reactive Mining Waste in Man-made and Natural Water Bodies Canadian Experience, Marine and Lake Disposal of Mine Tailings and Waste Rock, Egersund, Norway, Sept. 7–10, 2009

    Google Scholar 

  31. IAEA-TECDOC-1403; The long term stabilization of uranium mill tailings - Final report of a co-ordinated research project 2000–2004; August 2004

    Google Scholar 

  32. TAILSAFE (2004); Sustainable Improvement in Safety of Tailings Facilities; Report Implementation and Improvement of Closure and Restoration Plans for Disused Tailings Facilities, October 2004, http://www.tailsafe.com

  33. Ritcey, G.M. (1989). Tailings management: Problems and solutions in the mining industry. Amsterdam; New York, Elsevier

    Google Scholar 

  34. Beckers, Nicole, Böden auf künstlichen und natürlichen Substraten der ostthüringischen Bergbaufolgelandschaft als Senken und Quellen bergbauinduzierter Stoffe, Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung, Band 5, ISBN 3-88246-275-2, 2005

    Google Scholar 

  35. Offenlegungsschrift, DE 10 2011 100 731 A1, DPMA 06.05.2012

    Google Scholar 

  36. Merkel B. J., Planer-Friedrich B.. Grundwasserchemie, Springer-Verlag, 2002

    Google Scholar 

  37. Boyle1982 Boyle R.W.. Geochemical prospecting for thorium and uranium deposits, Develop. Econ. Geol. 16, Elsevier-Scientific Publ. Co., Amsterdam- Oxford-New York, 498 S. 1982

    Google Scholar 

  38. „Methodische Weiterentwicklung des Leitfadens zur radiologischen Untersuchung und Bewertung bergbaulicher Altlasten und Erweiterung des Anwendungsbereiches“; Herausgeber: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit; ISSN 1612–6386; Bonn, 2005

    Google Scholar 

  39. Lersow, M. (2010): Sichere und langzeitstabile Verwahrung von Tailings Ponds, insbesondere aus der Uranerzaufbereitung, Geotechnik 33 (2010), Nr. 4, S.351–369, VGE Verlag GmbH, Essen

    Google Scholar 

  40. Schmidt, P. (2007): Sanierung der Hinterlassenschaften der Urangewinnung in Sachsen und Thüringen, Technisches Seminar DESY Zeuthen, 13. Februar 2007

    Google Scholar 

  41. Metschies, Thomas, Conceptual Site Modelling, Hydraulic and Water Balance Modelling as basis for the development of a remediation concept; Regional Training Course on Remediation Infrastructure Development at a Test Site, Chemnitz, Germany, 3–7 December 2012

    Google Scholar 

  42. Operating plan Tailings Cells and Evaporation ponds PIÑON RIDGE MILL, Antrag der Energy Fuels Resources Corporation, zugelassen durch EPA, Aug. 2010

    Google Scholar 

  43. Tailings storage facility design report – Olympic dam expansion project – bhpbilliton, 2009; https://www.bhp.com/-/media/bhp/regulatory-information-media/copper/olympic-dam/0000/draft-eis-appendices/odxeisappendixf1tailingsstoragefacilitydesignreport.pdf

  44. Stellungnahme zur zukünftigen Bewirtschaftung der von der Wismut GmbH beeinflussten Oberflächenwasserkörper in Thüringen in Umsetzung der EU-WRRL - Bewirtschaftungszeitraum 2015 bis 2021; Paul, M. et al., Wismut GmbH, Chemnitz, Mai 2014

    Google Scholar 

  45. Schulze, G. (1993): Bestandsaufnahme und Charakterisierung der stofflichen Auswirkungen des Uranbergbaus und der Uranerzaufbereitung (Standort Seelingstädt) am Beispiel des Wasserpfades. - In: MUSEUM FÜR NATURKUNDE GERA (Hrsg.): Beiträge zur Geologie, Flora und Fauna Ostthüringens. Naturwissenschaftliche Reihe 20

    Google Scholar 

  46. Große Anfrage Deutscher Bundestag; Drucksache 12/3309; 24.09.92

    Google Scholar 

  47. Winde, F.: Kontamination von Fließgewässern-Prozessdynamik, Mechanismen und Steuerfaktoren; Untersuchungen zum Transport von gelöstem Uran in bergbaulich gestörten Landschaften; Habilitationsschrift vorgelegt der Chemischen-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena, Erteilung der Lehrbefähigung 09.Juli 2003 an Dr.rer.nat. Frank Winde

    Google Scholar 

  48. Frank Winde, Urankontamination von Fließgewässern - Prozessdynamik, Mechanismen und Steuerfaktoren: Untersuchungen zum Transport von gelöstem Uran in bergbaulich gestörten Landschaften unterschiedlicher Klimate/Driesen, H. H. Dr.; Taunusstein; 657 Seiten, ISBN 978-3-86866-087-6, April 2009

    Google Scholar 

  49. BMU, 2015; Version 23.07.2015: 3. Arbeitsentwurf der Mantelverordnung Grundwasser/Ersatzbaustoffe/Bodenschutz, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit

    Google Scholar 

  50. Wenzel, A.; Schlich, K.; Shemotyuk, L. und Nendza, M.: Revision der Umweltqualitätsnormen der Bundes-Oberflächengewässerverordnung nach Ende der Übergangsfrist für Richtlinie 2006/11/EG und Fortschreibung der europäischen Umweltqualitätsziele für prioritäre Stoffe; Umweltbundesamt, Dessau-Roßlau; ISSN 1862-4804; Texte 47/2015, Juni 2015

    Google Scholar 

  51. Andreas Artmannn et. al., Anwendung und Weiterentwicklung von Modellen für Endlagersicherheitsanalysen auf die Freigabe radioaktiver Stoffe zur Deponierung; Gesellschaft für Reaktorsicherheit (GRS), Abschlussbericht, 2014

    Google Scholar 

  52. Finite Elemente Programm zur Lösung Geotechnischer Aufgabenstellungen, M. Lersow FEMPLER ©, last update 2015

    Google Scholar 

  53. Backhaus, G. (1983), Deformationsgesetze, Akademie-Verlag, Berlin

    Google Scholar 

  54. Empfehlungen und Stellungnahmen der Strahlenschutzkommission 1990/1991; Band 24; ISBN 3-437-11519-7; Bonn, 1993

    Google Scholar 

  55. BGR (2007) Final Report „Mineral crustal (cement layers) formation on mine and mill tailings dumps“, Federal Institute of Geosciences and Natural Resources (BGR), 30.12.2007

    Google Scholar 

  56. M. Lersow (2003); Exhaustive proof of the soil mechanical behaviour of loose rocks in stabilized extensive mining sites XIIIth European Conference on Soil Mechanics and Geotechnical Engineering, August 2003, Prague; CZ Republic

    Google Scholar 

  57. Schiffman, R. L. (1980): “Technical note: Finite and infinitesimal strain consolidation”, Journal of Geotechnical Engineering 106(GT2, 26), 203–207.

    Google Scholar 

  58. LAGA Ad-hoc-AG „Deponietechnik“: Bundeseinheitlicher Qualitätsstandard 2-0 „Mineralische Basisabdichtungskomponenten - übergreifende Anforderungen“ vom 04.12.2014

    Google Scholar 

  59. M. Lersow (2006), P. Schmidt; The Wismut Remediation Project, Proceedings of First International Seminar on Mine Closure, Sept. 2006, Perth, Australia, p. 181–190

    Google Scholar 

  60. Glötzl,R. (2009), Schneider-Glötzl, J., Liehr,S., Lenke,P., Wendt, M., Krebber, K., Gabino, L., Krywult, J.; First Results of a Field Test in Belchatow Brown Coal Mine to investigate Creeping Slopes; 2009, VIth International Brown Coal Mining Congress in Belchatow

    Google Scholar 

  61. Glötzl, R. (2002), Krywult, J.; Erfahrungen und neue Erkenntnisse zum Spannungs-verhalten einer Braunkohleschürfe; Bericht XXVI, Glötzl GmbH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lersow .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lersow, M., Waggitt, P. (2020). Radioactive Residues of Uranium Ore Mining Requiring Special Monitoring. In: Disposal of All Forms of Radioactive Waste and Residues. Springer, Cham. https://doi.org/10.1007/978-3-030-32910-5_5

Download citation

Publish with us

Policies and ethics