Affine, Vertex and W-algebras pp 183-202 | Cite as
Permutation Orbifolds of Rank Three Fermionic Vertex Superalgebras
Chapter
First Online:
- 1 Citations
- 1 Mentions
- 168 Downloads
Abstract
We describe the structure of the permutation orbifold of the rank three free fermion vertex superalgebra (of central charge \(\frac{3}{2}\)) and of the rank three symplectic fermion vertex superalgebra (of central charge \(-6\)).
Keywords
Fermions Vertex algebras \(\mathcal {W}\)-algebrasNotes
Acknowledgements
A.M. would like to thank T. Creutzig for discussion regarding Sect. 3.2. He would also like to thank D. Adamovic and P. Papi for invitation and hospitality during the conference Affine, vertex and W-algebras, INdAM, Rome, December 11–15, 2017. We also thank the referee for useful comments.
References
- 1.Adamovic, D., Milas, A.: On the triplet vertex algebra \(W(p)\). Adv. Math. 217, 2664–2699 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Adamovic, D., Lin, X., Milas, A.: ADE subalgebras of the triplet vertex algebra W(p): A-series. Commun. Contemp. Math. 15, 1350028 (2013) 30 ppMathSciNetzbMATHCrossRefGoogle Scholar
- 3.Adamovic, D., Lin, X., Milas, A.: ADE subalgebras of the triplet vertex algebra; D-series. Int. J. Math. 25(1), 1450001 (2014) 34 ppMathSciNetzbMATHCrossRefGoogle Scholar
- 4.Adamovic, D., Perse, O.: On coset vertex algebras with central charge. Math. Commun. 15(1), 143–157 (2010)MathSciNetzbMATHGoogle Scholar
- 5.Abe, T.: \(C_2\)-cofiniteness of 2-cyclic permutation orbifold models. Commun. Math. Phys. 317(2), 425–445 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Bouwknegt, P., Schoutens, K.: W-symmetry in conformal field theory. Phys. Rep. 223(4), 183–276 (1993)MathSciNetCrossRefGoogle Scholar
- 7.Creutzig, T., Linshaw, A.: Orbifolds of symplectic fermion algebras. Trans. Am. Math. Soc. 369, 467–494 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Chandrasekhar, O., Penn, M., Shao, H.: \(\mathbb{Z}_2\) orbifolds of free fermion algebras. Commun. Algebr. 46, 4201–4222 (2018)zbMATHCrossRefGoogle Scholar
- 9.Dong, C., Jiang, C.: Representations of the vertex operator algebra \(V_{L2}^{A4}\). J. Algebr. 377, 76–96 (2013)CrossRefGoogle Scholar
- 10.Dong, C., Mason, G.: Rational vertex operator algebras and the effective central charge. IMRN 56, 2989–3008 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Dong, C., Xu, F., Yu, N.: The 3-permutation orbifold of a lattice vertex operator algebra. J. Pure Appl. Algebr. (2017)Google Scholar
- 12.Genra, N.: Screening operators for \(\cal{W}\)-algebras. Selecta Math. 23(3), 2157–2202 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Kac, V., Roan, S.S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2), 307–342 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations. World scientific, Singapore (1987)zbMATHGoogle Scholar
- 15.Linshaw, A.: A Hilbert theorem for vertex algebras. Transform. Groups 15(2), 427–448 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Linshaw, A.: The structure of the Kac–Wang–Yan algebra. Commun. Math. Phys. 345(2), 545–585 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Linshaw, A.: Invariant subalgebras of affine vertex algebras. Adv. Math. 234, 61–84 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Lin, X.: ADE subalgebras of the triplet vertex algebra W(p): \(E_6, E_7\). Int. Math. Res. Not. 2015(15), 6752–6792 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Milas, A., Penn, M., Shao, H.: Permutation orbfolds of the Heisenberg vertex algebra, \(\cal{H}(3)\). J. Math. Phys. (To appear). arXiv.1804.01036
- 20.Milas, A., Penn, M. in preparationGoogle Scholar
- 21.Smith, L.: Polynomial Invariants of Finite Groups. Research Notes in Mathematics, vol. 6. A K Peters/CRC Press, Boca Raton (1995)zbMATHCrossRefGoogle Scholar
- 22.Theilman, K.: Mathematica Package OPE (1991)Google Scholar
- 23.Watts, G.M.T.: \(WB\) algebra representation theory. Nucl. Phys. B 339, 177 (1990)MathSciNetCrossRefGoogle Scholar
- 24.Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1946)zbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019