Advertisement

Classical and Quantum \({\mathcal {W}}\)-Algebras and Applications to Hamiltonian Equations

  • Alberto De SoleEmail author
Chapter
Part of the Springer INdAM Series book series (SINDAMS, volume 37)

Abstract

We start by giving an overview of the four fundamental physical theories, namely classical mechanics, quantum mechanics, classical field theory and quantum field theory, and the corresponding algebraic structures, namely Poisson algebras, associative algebras, Poisson vertex algebras and vertex algebras. We then focus on classical and quantum \(\mathcal {W}\)-algebras, with a particular emphasis on their application to integrable Hamiltonian PDE.

Keywords

Vertex algebras Classical \({\mathcal {W}}\)-algebras Hamiltonian reduction Integrable Hamiltonian systems 

References

  1. 1.
    Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries equation. Invent. Math. 50, 219–248 (1979)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bakalov, B., Kac, V.G.: Field Algebras. IMRN 3, 123–159 (2003)Google Scholar
  3. 3.
    Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: An operadic approach to vertex algebra and Poisson vertex algebra cohomology. arXiv:1806.08754
  4. 4.
    Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: Chiral vs classical operad. arXiv:1812.05972
  5. 5.
    Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: Computation of cohomology of Lie conformal and Poisson vertex algebras. arXiv:19xxx
  6. 6.
    Barakat, A., De Sole, A., Kac, V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4(2), 141–252 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Borcherds, R.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Burroughs, N., de Groot, M., Hollowood, T., Miramontes, L.: Generalized Drinfeld-Sokolov hierarchies II: the Hamiltonian structures. Commun. Math. Phys. 153, 187–215 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    de Boer, J., Tjin, T.: Representation theory of finite W algebras. Commun. Math. Phys. 158, 485–516 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    de Boer, J., Tjin, T.: The relation between quantum W algebras and Lie algebras. Commun. Math. Phys. 160, 317–332 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    de Groot, M., Hollowood, T., Miramontes, L.: Generalized Drinfeld-Sokolov hierarchies. Commun. Math. Phys. 145, 57–84 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    De Sole, A., Kac, V.G.: Finite vs. affine W-algebras. Jpn. J. Math. 1(1), 137–261 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    De Sole, A.: On classical finite and affine W-algebras. Springer INdAM Ser. 7, 51–67 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    De Sole, A., Fedele, L., valeri, D.: Generators of the quantum finite W-algebras in type A. arXiv:1806.03233
  15. 15.
    De Sole, A., Kac, V.G.: The variational Poisson cohomology Japan. J. Math. 8, 1–145 (2013)zbMATHGoogle Scholar
  16. 16.
    De Sole, A., Kac, V.G.: Essential variational Poisson cohomology Comm. Math. Phys. 313(3), 837–864 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    De Sole, A., Kac, V.G.: Non-local Poisson structures and applications to the theory of integrable systems Jpn. J. Math. 8(2), 233–347 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    De Sole, A., Kac, V.G., Valeri, D.: Classical W-algebras and generalized Drinfeld-Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras. Commun. Math. Phys. 323(2), 663–711 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    De Sole, A., Kac, V.G., Valeri, D.: Classical W-algebras and generalized Drinfeld-Sokolov hierarchies for minimal and short nilpotents. Alberto De Sole, Victor G. Kac, Daniele Valeri Commun. Math. Phys. 331(2), 623–676 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    De Sole, A., Kac, V.G., Valeri, D.: Dirac reduction for Poisson vertex algebras Comm. Math. Phys. 331(3), 1155–1190 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    De Sole, A., Kac, V.G., Valeri, D.: Adler-Gelfand-Dickey approach to classical W-algebras within the theory of Poisson vertex algebras. Int. Math. Res. Not. 21, 11186–11235 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    De Sole, A., Kac, V.G., Valeri, D.: Integrability of Dirac reduced bi-Hamiltonian equations. Trends in Contemporary Mathematics. Springer INdAM Series vol. 8, pp. 13–32 (2014)Google Scholar
  23. 23.
    De Sole, A., Kac, V.G., Valeri, D.: Structure of classical (finite and affine) W-algebras. J. Eur. Math. Soc. 18(9), 1873–1908 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    De Sole, A., Kac, V.G., Valeri, D.: Double Poisson vertex algebras and non-commutative Hamiltonian equations. Adv. Math. 281, 1025–1099 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    De Sole, A., Kac, V.G., Valeri, D.: A new scheme of integrability for (bi)Hamiltonian PDE. Commun. Math. Phys. 347(2), 449–488 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    De Sole, A., Kac, V.G., Valeri, D.: Classical W-algebras for \(\mathfrak{gl}_N\) and associated integrable Hamiltonian hierarchies. Commun. Math. Phys. 348(1), 265–319 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    De Sole, A., Kac, V.G., Valeri, D.: Finite W-algebras for \(\mathfrak{gl}_N\). Adv. Math. 327, 173–224 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    De Sole, A., Kac, V.G., Valeri, D.: Classical affine W-algebras and the associated integrable Hamiltonian hierarchies for classical Lie algebras. Commun. Math. Phys. 360(3), 851–918 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    De Sole, A., Kac, V.G., Valeri, D.: A Lax type operator for quantum finite W-algebras. arXiv:1707.03669
  30. 30.
    De Sole, A., Kac, V.G., Valeri, D., Wakimoto, M.: Local and non-local multiplicative Poisson vertex algebras and differential-difference equations. arXiv:1809.01735
  31. 31.
    De Sole, A., Kac, V.G., Valeri, D., Wakimoto, M.: Poisson \(\lambda \)-brackets for differential-difference equations. arXiv:1806.05536
  32. 32.
    Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. Sov. J. Math. 30, 1975–2036 (1985)zbMATHCrossRefGoogle Scholar
  33. 33.
    Elashvili, A.G., Kac, V.G., Vinberg, E.B.: Cyclic elements in semisimple Lie algebras. Transf. Groups 18, 97–130 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Fehér, L., Harnad, J., Marshall, I.: Generalized Drinfeld-Sokolov reductions and KdV type hierarchies. Commun. Math. Phys. 154(1), 181–214 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Feigin, B.L., Frenkel, E.: Quantization of Drinfeld-Sokolov reduction. Phys. Lett., B 246, 75–81 (1990)Google Scholar
  36. 36.
    Fernández-Pousa, C., Gallas, M., Miramontes, L., Sánchez Guillén, J.: \(\cal{W}\)-algebras from soliton equations and Heisenberg subalgebras. Ann. Phys. 243(2), 372–419 (1995)Google Scholar
  37. 37.
    Fernández-Pousa, C., Gallas, M., Miramontes, L., Sánchez Guillén, J.: Integrable systems and \(\cal{W}\)-algebras. VIII J. A. Swieca Summer School on Particles and Fields (Rio de Janeiro, 1995), pp. 475–479Google Scholar
  38. 38.
    Gan, W.L., Ginzburg, V.: Quantization of Slodowy slices. Int. Math. Res. Not. 5, 243–255 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gelfand, I.M., Gelfand, S.I., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Kac, V.G.: Vertex Algebras for Beginners. University Lecture Notes, vol. 10, 2nd edn. AMS, Providence (1996)zbMATHGoogle Scholar
  41. 41.
    Kac, V.G., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004). Corrigendum, Adv. Math. 193, 453–455 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Lynch, T.E.: Generalized Whittaker vectors and representation theory. Thesis (Ph.D.) - Massachusetts Institute of Technology (1979)Google Scholar
  45. 45.
    Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1–55 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Slodowy, P.: Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics, vol. 815. Springer, Berlin (1980)zbMATHCrossRefGoogle Scholar
  48. 48.
    Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics, vol. 118. Birkhäuser, Basel (1994)zbMATHCrossRefGoogle Scholar
  49. 49.
    Zamolodchikov, A.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Teor. Mat. Fiz 65(3), 347–359 (1985)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. AMS 9, 237–302 (1996)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Rome La SapienzaRomaItaly

Personalised recommendations