Affine, Vertex and W-algebras pp 99-134 | Cite as
Classical and Quantum \({\mathcal {W}}\)-Algebras and Applications to Hamiltonian Equations
Chapter
First Online:
- 2 Mentions
- 172 Downloads
Abstract
We start by giving an overview of the four fundamental physical theories, namely classical mechanics, quantum mechanics, classical field theory and quantum field theory, and the corresponding algebraic structures, namely Poisson algebras, associative algebras, Poisson vertex algebras and vertex algebras. We then focus on classical and quantum \(\mathcal {W}\)-algebras, with a particular emphasis on their application to integrable Hamiltonian PDE.
Keywords
Vertex algebras Classical \({\mathcal {W}}\)-algebras Hamiltonian reduction Integrable Hamiltonian systemsReferences
- 1.Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries equation. Invent. Math. 50, 219–248 (1979)zbMATHCrossRefGoogle Scholar
- 2.Bakalov, B., Kac, V.G.: Field Algebras. IMRN 3, 123–159 (2003)Google Scholar
- 3.Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: An operadic approach to vertex algebra and Poisson vertex algebra cohomology. arXiv:1806.08754
- 4.Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: Chiral vs classical operad. arXiv:1812.05972
- 5.Bakalov, B., De Sole, A., Heluani, R., Kac, V.G.: Computation of cohomology of Lie conformal and Poisson vertex algebras. arXiv:19xxx
- 6.Barakat, A., De Sole, A., Kac, V.G.: Poisson vertex algebras in the theory of Hamiltonian equations. Jpn. J. Math. 4(2), 141–252 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Borcherds, R.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Burroughs, N., de Groot, M., Hollowood, T., Miramontes, L.: Generalized Drinfeld-Sokolov hierarchies II: the Hamiltonian structures. Commun. Math. Phys. 153, 187–215 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.de Boer, J., Tjin, T.: Representation theory of finite W algebras. Commun. Math. Phys. 158, 485–516 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.de Boer, J., Tjin, T.: The relation between quantum W algebras and Lie algebras. Commun. Math. Phys. 160, 317–332 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.de Groot, M., Hollowood, T., Miramontes, L.: Generalized Drinfeld-Sokolov hierarchies. Commun. Math. Phys. 145, 57–84 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.De Sole, A., Kac, V.G.: Finite vs. affine W-algebras. Jpn. J. Math. 1(1), 137–261 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.De Sole, A.: On classical finite and affine W-algebras. Springer INdAM Ser. 7, 51–67 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.De Sole, A., Fedele, L., valeri, D.: Generators of the quantum finite W-algebras in type A. arXiv:1806.03233
- 15.De Sole, A., Kac, V.G.: The variational Poisson cohomology Japan. J. Math. 8, 1–145 (2013)zbMATHGoogle Scholar
- 16.De Sole, A., Kac, V.G.: Essential variational Poisson cohomology Comm. Math. Phys. 313(3), 837–864 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.De Sole, A., Kac, V.G.: Non-local Poisson structures and applications to the theory of integrable systems Jpn. J. Math. 8(2), 233–347 (2013)MathSciNetzbMATHGoogle Scholar
- 18.De Sole, A., Kac, V.G., Valeri, D.: Classical W-algebras and generalized Drinfeld-Sokolov bi-Hamiltonian systems within the theory of Poisson vertex algebras. Commun. Math. Phys. 323(2), 663–711 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.De Sole, A., Kac, V.G., Valeri, D.: Classical W-algebras and generalized Drinfeld-Sokolov hierarchies for minimal and short nilpotents. Alberto De Sole, Victor G. Kac, Daniele Valeri Commun. Math. Phys. 331(2), 623–676 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.De Sole, A., Kac, V.G., Valeri, D.: Dirac reduction for Poisson vertex algebras Comm. Math. Phys. 331(3), 1155–1190 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.De Sole, A., Kac, V.G., Valeri, D.: Adler-Gelfand-Dickey approach to classical W-algebras within the theory of Poisson vertex algebras. Int. Math. Res. Not. 21, 11186–11235 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.De Sole, A., Kac, V.G., Valeri, D.: Integrability of Dirac reduced bi-Hamiltonian equations. Trends in Contemporary Mathematics. Springer INdAM Series vol. 8, pp. 13–32 (2014)Google Scholar
- 23.De Sole, A., Kac, V.G., Valeri, D.: Structure of classical (finite and affine) W-algebras. J. Eur. Math. Soc. 18(9), 1873–1908 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.De Sole, A., Kac, V.G., Valeri, D.: Double Poisson vertex algebras and non-commutative Hamiltonian equations. Adv. Math. 281, 1025–1099 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.De Sole, A., Kac, V.G., Valeri, D.: A new scheme of integrability for (bi)Hamiltonian PDE. Commun. Math. Phys. 347(2), 449–488 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.De Sole, A., Kac, V.G., Valeri, D.: Classical W-algebras for \(\mathfrak{gl}_N\) and associated integrable Hamiltonian hierarchies. Commun. Math. Phys. 348(1), 265–319 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.De Sole, A., Kac, V.G., Valeri, D.: Finite W-algebras for \(\mathfrak{gl}_N\). Adv. Math. 327, 173–224 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.De Sole, A., Kac, V.G., Valeri, D.: Classical affine W-algebras and the associated integrable Hamiltonian hierarchies for classical Lie algebras. Commun. Math. Phys. 360(3), 851–918 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.De Sole, A., Kac, V.G., Valeri, D.: A Lax type operator for quantum finite W-algebras. arXiv:1707.03669
- 30.De Sole, A., Kac, V.G., Valeri, D., Wakimoto, M.: Local and non-local multiplicative Poisson vertex algebras and differential-difference equations. arXiv:1809.01735
- 31.De Sole, A., Kac, V.G., Valeri, D., Wakimoto, M.: Poisson \(\lambda \)-brackets for differential-difference equations. arXiv:1806.05536
- 32.Drinfeld, V.G., Sokolov, V.V.: Lie algebras and equations of Korteweg-de Vries type. Sov. J. Math. 30, 1975–2036 (1985)zbMATHCrossRefGoogle Scholar
- 33.Elashvili, A.G., Kac, V.G., Vinberg, E.B.: Cyclic elements in semisimple Lie algebras. Transf. Groups 18, 97–130 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Fehér, L., Harnad, J., Marshall, I.: Generalized Drinfeld-Sokolov reductions and KdV type hierarchies. Commun. Math. Phys. 154(1), 181–214 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Feigin, B.L., Frenkel, E.: Quantization of Drinfeld-Sokolov reduction. Phys. Lett., B 246, 75–81 (1990)Google Scholar
- 36.Fernández-Pousa, C., Gallas, M., Miramontes, L., Sánchez Guillén, J.: \(\cal{W}\)-algebras from soliton equations and Heisenberg subalgebras. Ann. Phys. 243(2), 372–419 (1995)Google Scholar
- 37.Fernández-Pousa, C., Gallas, M., Miramontes, L., Sánchez Guillén, J.: Integrable systems and \(\cal{W}\)-algebras. VIII J. A. Swieca Summer School on Particles and Fields (Rio de Janeiro, 1995), pp. 475–479Google Scholar
- 38.Gan, W.L., Ginzburg, V.: Quantization of Slodowy slices. Int. Math. Res. Not. 5, 243–255 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Gelfand, I.M., Gelfand, S.I., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Kac, V.G.: Vertex Algebras for Beginners. University Lecture Notes, vol. 10, 2nd edn. AMS, Providence (1996)zbMATHGoogle Scholar
- 41.Kac, V.G., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241, 307–342 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 42.Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004). Corrigendum, Adv. Math. 193, 453–455 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101–184 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Lynch, T.E.: Generalized Whittaker vectors and representation theory. Thesis (Ph.D.) - Massachusetts Institute of Technology (1979)Google Scholar
- 45.Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19(5), 1156–1162 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
- 46.Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1–55 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Slodowy, P.: Simple Singularities and Simple Algebraic Groups. Lecture Notes in Mathematics, vol. 815. Springer, Berlin (1980)zbMATHCrossRefGoogle Scholar
- 48.Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progress in Mathematics, vol. 118. Birkhäuser, Basel (1994)zbMATHCrossRefGoogle Scholar
- 49.Zamolodchikov, A.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Teor. Mat. Fiz 65(3), 347–359 (1985)MathSciNetCrossRefGoogle Scholar
- 50.Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. AMS 9, 237–302 (1996)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019