Affine, Vertex and W-algebras pp 65-85 | Cite as
Quasi-particle Bases of Principal Subspaces of Affine Lie Algebras
Chapter
First Online:
- 161 Downloads
Abstract
This note is a survey of recent results on the construction of combinatorial bases of principal subspaces of generalized Verma module \(N(k\Lambda _0)\) and standard module \(L(k\Lambda _0)\) appearing in [5, 6, 7]. By using these bases, we obtain characters of principal subspaces.
Keywords
Affine Lie algebras Vertex operator algebras Principal subspaces Combinatorial basesNotes
Acknowledgements
The author is partially supported by the Croatian Science Foundation under the project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).
References
- 1.Andrews, G.E.: Partitions and Durfee dissection. Am. J. Math. 101(3), 735–742 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Ardonne, E., Kedem, R., Stone, M.: Fermionic characters and arbitrary highest-weight integrable \(\widehat{\mathfrak{sl}}_{r+1}\)-modules. Commun. Math. Phys. 264(2), 427–464 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Baranović, I.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for \(D^{(1)}_4\). Commun. Algebra 39(3), 1007–1051 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Baranović, I., Primc, M., Trupčević, G.: Bases of Feigin-Stoyanovsky’s type subspaces for \(C^{(1)}_l\). Ramanujan J. 45(1), 265–289 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Butorac, M.: Quasi-particle bases of principal subspaces of the affine Lie algebra of type \(G_{2}^{(1)}\). Glas. Mat. Ser. III 52(1), 79–98 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebras of types \(B^{(1)}_l\) and \(C^{(1)}_l\). Glas. Mat. Ser. III 51(1), 59–108 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\). J. Pure Appl. Algebra 218(3), 424–447 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Butorac M., Sadowski, C.: Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type \(A_{2n+1}^{(2)}\), \(D_n^{(2)}\), \(E_6^{(2)}\) and \(D^{(3)}_4\). Preprint (2018)Google Scholar
- 9.Calinescu, C.: Intertwining vertex operators and certain representations of \(\widehat{sl(n)}\). Commun. Contemp. Math. 10(1), 47–79 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Calinescu, C.: Principal subspaces of higher-level standard \(\widehat{sl(3)}\)-modules. J. Pure Appl. Algebra 210(2), 559–575 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of principal subspaces of standard \(A_2^{(2)}\)-modules, I. Internat. J. Math. 25(7), 1450063 (2014) 44 ppGoogle Scholar
- 12.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types \(A, D, E\). J. Algebra 323(1), 167–192 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A^{(1)}_{1}\) -modules, II: higher-level case. J. Pure Appl. Algebra 212(8), 1928–1950 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A^{(1)}_{1}\)-modules, I: level one case. Int. J. Math. 19(1), 71–92 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Calinescu, C., Milas, A., Penn, M.: Vertex algebraic structure of principal subspaces of basic \(A_{2n}^{(2)}\)-modules. J. Pure Appl. Algebra 220(5), 1752–1784 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. Ramanujan J. 12(3), 379–397 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Commun. Contemp. Math. 5(6), 947–966 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Dasmahapatra, S., Dedem, R., Klassen, T.R., McCoy, B.M., Melzer, E.: Quasi-particles, conformal field theory and \(q\) series. Yang-Baxter equations in Paris (1992). Int. J. Mod. Phys. B 7, 3617–3648 (1993)zbMATHCrossRefGoogle Scholar
- 19.Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics, vol. 112. Birkhäuser, Boston (1993)zbMATHCrossRefGoogle Scholar
- 20.Dong, C., Li, H., Mason, G.: Simple currents and extensions of vertex operator algebras. Commun. Math. Physics 180(3), 671–707 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Feigin, B., Feigin, E., Jimbo, M., Miwa, T., Mukhin, E.: Principal \(\widehat{sl_3}\) subspaces and quantum Toda Hamiltonian. Algebraic analysis and around, pp. 109–166, Advanced Studies in Pure Mathematics, 54. Mathematical Society of Japan, Tokyo, pp. 109–166 (2009)Google Scholar
- 22.Feigin, E.: The PBW filtration. Represent. Theory 13, 165–181 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Stoyanovskiǐ, A.V.; Feǐgin, B. L.: Functional models of the representations of current algebras, and semi-infinite Schubert cells. Funktsional. Anal. i Prilozhen. 28(1), 96, 68–90 (1994); Funct. Anal. Appl. 28(1), 55–72 (1994); Feǐgin, B.L., Stoyanovskiǐ, A.V.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold. Preprint (1993) arXiv:hep-th/9308079. Cited 30 Dec 2018
- 24.Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebra 112(3), 247–286 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics, vol. 9. Springer, New York (1972)zbMATHCrossRefGoogle Scholar
- 27.Jerković, M.: Character formulas for Feigin-Stoyanovsky’s type subspaces of standard \(\widetilde{sl(3, C)}\)-modules. Ramanujan J. 27(3), 357–376 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Jerković, M.: Recurrence relations for characters of affine Lie algebra \(A_l^{(1)}\). J. Pure Appl. Algebra 213(6), 913–926 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Jerković, M., Primc, M.: Quasi-particle fermionic formulas for \((k, 3)\)-admissible configurations. Cent. Eur. J. Math. 10(2), 703–721 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
- 31.Kawasetsu, K.: The free generalized vertex algebras and generalized principal subspaces. J. Algebra 444, 20–51 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Kawasetsu, K.: The intermediate vertex subalgebras of the lattice vertex operator algebras. Lett. Math. Phys. 104(2), 157–178 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Kožić, S.: Principal subspaces for double Yangian \(DY(sl2)\). J. Lie Theory 28(3), 673–694 (2018)MathSciNetzbMATHGoogle Scholar
- 34.Kožić, S.: Vertex operators and principal subspaces of level one for \(U_q(\widehat{\mathfrak{sl}_{2}})\). J. Algebra 455, 251–290 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Kožić, S.: Principal subspaces for quantum affine algebra \(U_q(A^{(1)}_n)\). J. Pure Appl. Algebra 218(11), 2119–2148 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Lepowsky, J., Li, H.: Introduction to Vertex Operator Algebras and Their Representations. Progress in Mathematics, vol. 227, xiv+318 pp. Birkhäuser Boston, Inc., Boston (2004)zbMATHCrossRefGoogle Scholar
- 37.Lepowsky, J., Primc, M.: Structure of the Standard Modules for the Affine Lie Algebra \(A_1^{(1)}\). Contemporary Mathematics, vol. 46, ix+84 pp. American Mathematical Society, Providence (1985)Google Scholar
- 38.Lepowsky, J., Wilson, R.L.: The structure of standard modules, I: universal algebras and the Rogers-Ramanujan identities. Invent. Math. 77, 199–290 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Li, H.: Local systems of vertex operators, vertex superalgebras and modules. J. Pure Appl. Algebra 109, 143–195 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Meurman, A., Primc, M.: Annihilating fields of standard modules of \(\widetilde{sl}(2, \mathbb{C})\) and combinatorial identities. Memoirs Amer. Math. Soc. 137(652) (1999)Google Scholar
- 41.Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and \(\cal{W}\)-algebras. New York J. Math. 18, 621–650 (2012)MathSciNetzbMATHGoogle Scholar
- 42.Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of the basic modules for twisted affine Lie algebras of type \(A_{2n-1}^{(2)}, D_n^{(2)}, E_6^{(2)}\). J. Algebra 496, 242–291 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of basic \(D_4^{(3)}\)-modules. Ramanujan J. 43(3), 571–617 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Penn, M., Sadowski, C., Webb, G.: Principal subspaces of twisted modules for certain lattice vertex operator algebras. Preprint (2018)Google Scholar
- 45.Primc, M.: Combinatorial basis of modules for affine Lie algebra \(B_2^{(1)}\). Cent. Eur. J. Math. 11, 197–225 (2013)MathSciNetzbMATHGoogle Scholar
- 46.Sadowski, C.: Presentations of the principal subspaces of the higher-level standard \(\widehat{\mathfrak{sl}(3)}\)-modules. J. Pure Appl. Algebra 219(6), 2300–2345 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Sadowski, C.: Principal subspaces of higher-level standard \(\widehat{sl(n)}\)-modules. Int. J. Math. 26(08), 1550053 (2015) 35 ppMathSciNetzbMATHCrossRefGoogle Scholar
- 48.Trupčević, G.: Characters of Feigin-Stoyanovsky’s type subspaces of level one modules for affine Lie algebras of types \(A_l^{(1)}\) and \(D_4^{(1)}\). Glas. Mat. Ser. III 46(1), 49–70 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 1 standard mod-ules for \(\widetilde{s}l(l+1, C)\). Commun. Algebra 38(10), 3913–3940 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 50.Trupčević, G.: Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\widetilde{s}l(l+1, C)\)-modules. J. Algebra 322(10), 3744–3774 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019