Affine, Vertex and W-algebras pp 23-36 | Cite as
Twisted Dirac Index and Applications to Characters
Chapter
First Online:
- 178 Downloads
Abstract
We present recent joint work with Peter Trapa on the notion of twisted Dirac index and its applications to (twisted) characters and to extensions of modules in a short and informal way. We also announce some further generalizations with applications to Lefschetz numbers and automorphic forms.
Keywords
Open image in new window
References
- 1.Alekseev, A., Meinrenken, E.: Lie theory and the Chern-Weil homomorphism. Ann. Sci. Ecole. Norm. Sup. 38, 303–338 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Arthur, J.: A Paley-Wiener theorem for real reductive groups. Acta Math. 150(1–2), 1–89 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Arthur, J.: The invariant trace formula II. Global theory. J. Am. Math. Soc. 1(3), 501–554 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Atiyah, M., Schmid, W.: A geometric construction of the discrete series for semisimple Lie groups. Invent. Math. 42, 1–62 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Barbasch, D., Ciubotaru, D., Trapa, P.: Dirac cohomology for graded affine Hecke algebras. Acta Math. 209(2), 197–227 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Barbasch, D., Pandžić, P.: Dirac cohomology and unipotent representations of complex groups. In: Connes, A. Gorokhovsky, A. Lesch, M. Pflaum, M. Rangipour, B. (eds.) Noncommutative Geometry and Global Analysis. Contemporary Mathematics, vol. 546, pp. 1–22. American Mathematical Society, Providence (2011)Google Scholar
- 7.Barbasch, D., Pandžić, P.: Dirac cohomology of unipotent representations of \(Sp(2n,{\mathbb{R}})\) and \(U(p, q)\). J. Lie Theory 25(1), 185–213 (2015)MathSciNetzbMATHGoogle Scholar
- 8.Barbasch, D., Pandžić, P., Trapa, P.: Dirac index and twisted characters. Trans. Am. Math. Soc. 371(3), 1701–1733 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Barbasch, D., Pandžić, P.: Dirac index, Lefschetz numbers and the trace formula, in preparationGoogle Scholar
- 10.Barbasch, D., Speh, B.: Cuspidal representations of reductive groups. arXiv:0810.0787
- 11.Bouaziz, A.: Sur les charactères des groupes de Lie réductifs non connexes. J. Funct. Anal. 70(1), 1–79 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Ciubotaru, D.: Dirac cohomology for symplectic reflection algebras. Sel. Math. 22(1), 111–144 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules. Representation theory of reductive groups (Park City, Utah). Progress in Mathematics, vol. 40, pp. 97–143. Birkhäuser, Boston (1982)CrossRefGoogle Scholar
- 14.Goette, S.: Equivariant \(\eta \)-invariants on homogeneous spaces. Math. Z. 232, 1–42 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Harish-Chandra, The Characters of Semisimple Groups, Trans. Am. Math. Soc. 83(1), 98–163 (1956)Google Scholar
- 16.Huang, J.-S., Wong, K.D.: A Casselman-Osborne theorem for rational Cherednik algebras. Transform. Groups 23(1), 75–99 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Huang, J.-S., Kang, Y.-F., Pandžić, P.: Dirac cohomology of some Harish-Chandra modules. Transform. Groups 14(1), 163–173 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Am. Math. Soc. 15, 185–202 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Huang, J.-S., Pandžić, P.: Dirac Operators in Representation Theory. Mathematics: Theory and Applications. Birkhäuser, Boston (2006)Google Scholar
- 20.Huang, J.-S., Pandžić, P.: Dirac cohomology for Lie superalgebras. Transform. Groups 10, 201–209 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Huang, J.-S., Pandžić, P., Protsak, V.: Dirac cohomology of Wallach representations. Pac. J. Math. 250(1), 163–190 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Huang, J.-S., Pandžić, P., Renard, D.: Dirac operators and Lie algebra cohomology. Represent. Theory 10, 299–313 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Huang, J.-S., Pandžić, P., Zhu, F.: Dirac cohomology, K-characters and branching laws. Am. J. Math. 135(5), 1253–1269 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Kac, V.P., Möseneder Frajria, P., Papi, P.: Multiplets of representations, twisted Dirac operators and Vogan’s conjecture in affine setting. Adv. Math. 217, 2485–2562 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Kac, V.P., Möseneder Frajria, P., Papi, P.: Dirac operators and the very strange formula for Lie superalgebras. In: Advances in Lie Superalgebras, Springer INdAM Series, vol. 7, pp. 121–148zbMATHCrossRefGoogle Scholar
- 26.Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups. Duke Math. J. 100, 447–501 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 27.Kostant, B.: Dirac cohomology for the cubic Dirac operator. Studies in Memory of Issai Schur. Progress in Mathematics, vol. 210, pp. 69–93 (2003)Google Scholar
- 28.Kumar, S.: Induction functor in non-commutative equivariant cohomology and Dirac cohomology. J. Algebra 291, 187–207 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Labesse, J.P.: Pseudo-coefficients très cuspidaux et K-theorie. Math. Ann. 291, 607–616 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 30.Labesse, J.-P.: Cohomologie, stabilization et changement de base. Astérisque (257), (1999)Google Scholar
- 31.Mehdi, S., Pandžić, P., Vogan, D.: Translation principle for Dirac index. Am. J. Math. 139(6), 1465–1491 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 32.Mehdi, S., Pandžić, P., Vogan, D., Zierau, R.: Dirac index and associated cycles of Harish-Chandra modules. arXiv:1712.04169
- 33.Mehdi, S., Pandžić, P., Vogan, D., Zierau, R.: Computing the associated cycles of certain Harish-Chandra modules. Glas. Mat. 53(73), 2, 275–330 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Pandžić, P., Renard, D.: Dirac induction for Harish-Chandra modules. J. Lie Theory 20(4), 617–641 (2010)MathSciNetzbMATHGoogle Scholar
- 35.Pandžić, P., Somberg, P.: Dirac operator and its cohomology for the quantum group \(U_q(\mathfrak{sl}{(2))}\). J. Math. Phys. 58(4), 041702 (2017), 13 ppGoogle Scholar
- 36.Parthasarathy, R.: Dirac operator and the discrete series. Ann. Math. 96, 1–30 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- 37.Prlić, A.: Algebraic Dirac induction for nonholomorphic discrete series of \(SU(2,1)\). J. Lie Theory 26(3), 889–910 (2016)MathSciNetzbMATHGoogle Scholar
- 38.Prlić, A.: Construction of discrete series representations of \(SO_e(4,1)\) via algebraic Dirac induction. arXiv:1811.01610
- 39.Rohlfs, J., Speh, B.: Automorphic representations and Lefschetz numbers. Ann. Sci. Ec. Norm. Super. \(4^e\) sér. 22, 473–499(1989)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Vogan, D.: Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, (Fall 1997)Google Scholar
- 41.Vogan, D., Zuckerman, G.: Unitary representations with nonzero cohomology. Compos. Math. 53, 51–90 (1984)MathSciNetzbMATHGoogle Scholar
- 42.Waldspurger, J.-L.: Les facteurs de transfert pour les groupes classiques: une formulaire. Manuscr. Math. 133(1–2), 41–82 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Waldspurger, J.-L.: La formule des traces locale tordue. arXiv:1205.1100
- 44.Xiao, W.: Dirac operators and cohomology for Lie superalgebra of type I. J. Lie Theory 27(1), 111–121 (2017)MathSciNetzbMATHGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019