Affine, Vertex and W-algebras pp 1-22 | Cite as
Kostant Pairs of Lie Type and Conformal Embeddings
- 1 Citations
- 168 Downloads
Abstract
We deal with some aspects of the theory of conformal embeddings of affine vertex algebras, providing a new proof of the Symmetric Space Theorem and a criterion for conformal embeddings of equal rank subalgebras. We study some examples of embeddings at the critical level. We prove a criterion for embeddings at the critical level which enables us to prove equality of certain central elements.
Keywords
Symmetric space theorem Conformal embedding Pair of Lie type Vertex operator algebrasNotes
Acknowledgements
Dražen Adamović and Ozren Perše are partially supported by the Croatian Science Foundation under the project 2634 and by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund–the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).
References
- 1.Adamović, D., Perše, O.: The vertex algebra \(M(1)^+\) and certain affine vertex algebras of level \(-1\). SIGMA 8, 040 (2012), 16 ppGoogle Scholar
- 2.Adamović, D., Perše, O.: Some general results on conformal embeddings of affine vertex operator algebras. Algebr. Represent. Theory 16(1), 51–64 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Adamović, D., Perše, O.: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl. 13, 1350062 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Finite vs infinite decompositions in conformal embeddings. Commun. Math. Phys. 348, 445–473 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions. Japanese J. Math. 12(2), 261–315 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Adamović, D., Kac, V.G., Moseneder Frajria, P., Papi, P., Perše, O.: On the classification of non-equal rank affine conformal embeddings and applications. Sel. Math. New Ser. 24, 2455–2498 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 7.Arakawa, T.: Representation theory of \(W\)–algebras and Higgs branch conjecture. arXiv:1712.07331, to appear in Proceedings of the ICM (2018)
- 8.Arcuri, R.C., Gomez, J.F., Olive, D.I.: Conformal subalgebras and symmetric spaces. Nucl. Phys. B 285(2), 327–339 (1987)MathSciNetCrossRefGoogle Scholar
- 9.Cellini, P., Kac, V.G., Möseneder Frajria, P., Papi, P.: Decomposition rules for conformal pairs associated to symmetric spaces and abelian subalgebras of \(\mathbb{Z}_2\)-graded Lie algebras. Adv. Math. 207, 156–204 (2006)Google Scholar
- 10.Daboul C.: Algebraic proof of the symmetric space theorem. J. Math. Phys. 37(7), 3576–3586 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Frenkel, I.B., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Gaiotto, D.: Twisted compactifications of 3d N\(=\)4 theories and conformal blocks. arXiv:1611.01528
- 13.Goddard, P., Nahm, W., Olive, D.: Symmetric spaces, Sugawara energy momentum tensor in two dimensions and free fermions. Phys. Lett. B 160, 111–116MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)zbMATHCrossRefGoogle Scholar
- 15.Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)zbMATHCrossRefGoogle Scholar
- 16.Kac, V.G., Sanielevici, M.: Decomposition of representations of exceptional affine algebras with respect to conformal subalgebras. Phys. Rev. D 37(8), 2231–2237 (1988)MathSciNetCrossRefGoogle Scholar
- 17.Kac, V.G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math. 70, 156–236 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Kac, V.G., Möseneder Frajria, P., Papi, P.: Dirac operators and the very strange formula for Lie superalgebras. In: Papi, P., Gorelik, M. (eds.) Advances in Lie Superalgebras. Springer INdAM Series, vol. 7. Springer, Berlin (2014)zbMATHCrossRefGoogle Scholar
- 19.Kostant, B.: A cubic Dirac operator and the emergence of Euler number multiplets for equal rank subgroupps. Duke Math. J. 100(3), 447–501 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Moore, G.W., Tachikawa, Y.: On 2d TQFTs whose values are holomorphic symplectic varieties. In: Proceeding of Symposia in Pure Mathematics, vol. 85 (2012). arXiv:1106.5698
- 21.Schellekens, A.N., Warner, N.P.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev. D (3) 34(10), 3092–3096 (1986)MathSciNetCrossRefGoogle Scholar
- 22.Tachikawa, Y.: On some conjectures on VOAs, preprintGoogle Scholar