Skip to main content

A Review of South Pacific Tropical Cyclones: Impacts of Natural Climate Variability and Climate Change

  • Chapter
  • First Online:
Climate Change and Impacts in the Pacific

Part of the book series: Springer Climate ((SPCL))

Abstract

Impacts of tropical cyclones in the South Pacific Island countries are of great significance. Now with the growing threats from human-induced climate change, the need for effective disaster risk management and adaptation strategies for these island countries is more important than before. In order to implement appropriate strategies, a comprehensive understanding of South Pacific tropical cyclone activity—and how it is likely to change as a result of human-induced climate change—is essential. While a number of past studies have examined various aspects of tropical cyclone activity in the South Pacific basin, a review that consolidates those studies with new information is essential. In this chapter, we first examine tropical cyclone data quality for the South Pacific basin and then review the robustness of the relationship between South Pacific tropical cyclones and drivers of natural climate variability. Note that an understanding of the limitations of the data quality is important to determine the extent of natural climate variability and signatures—if any—of human-induced climate change on tropical cyclones. We then examine the influence of climate change on tropical cyclones using up-to-date historical observations and climate model projections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashok K, Behera S, Rao AS, Weng HY, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Bagnato S, Linsley B, Howe S, Wellington G, Salinger J (2004) Evaluating the use of the massive coral Diploastrea heliopora for paleoclimate reconstruction. Paleoceanography 19:1–12

    Article  Google Scholar 

  • Basher RE, Zheng X (1995) Tropical cyclones in the Southwest Pacific: spatial patterns and relationships to southern oscillation and sea surface temperature. J Clim 8:1249–1260

    Article  Google Scholar 

  • Bessafi M, Wheeler MC (2006) Modulation of South Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon Weather Rev 134:638–656

    Article  Google Scholar 

  • Buckley BW, Leslie LM, Speer MS (2003) The impact of observational technology on climate database quality: tropical cyclones in the Tasman Sea. J Clim 16:2640–2645

    Article  Google Scholar 

  • Callaghan J, Power SB, (2011) Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century. Clim Dyn, 37:647–662

    Google Scholar 

  • Chand SS (2018) Impact of climate variability and change on tropical cyclones in the South Pacific. In: DellaSala DA, Goldstein MI (eds) The Encyclopedia of the anthropocene, vol 2. Elsevier, Oxford, pp 217–225

    Chapter  Google Scholar 

  • Chand SS, Walsh KJE (2009) Tropical cyclone activity in the Fiji region: spatial patterns and relationship to large-scale circulation. J Clim 22:3877–3893

    Article  Google Scholar 

  • Chand SS, Walsh KJE (2010) The influence of the Madden-Julian oscillation on tropical cyclone activity in the Fiji region. J Clim 23:868–886

    Article  Google Scholar 

  • Chand SS, Walsh KJE (2011) Influence of ENSO on tropical cyclone intensity in the Fiji region. J Clim 24:4096–4108

    Article  Google Scholar 

  • Chand SS, McBride JL, Tory KJ, Wheeler MC, Walsh KJE (2013) Impact of different ENSO regimes on Southwest Pacific tropical cyclones. J Clim 26:600–608

    Article  Google Scholar 

  • Chand SS, Tory KJ, Ye H, Walsh KJE (2017) Projected increase in El Niño-driven tropical cyclone frequency in the Pacific. Nat Clim Chang 7:123–127

    Article  Google Scholar 

  • Chen G (2011) How does shifting Pacific Ocean warming modulate on tropical cyclone frequency over the South China Sea? J Clim 24:4695–4700

    Article  Google Scholar 

  • Chen G, Tam CY (2010) Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett 37:L01803. https://doi.org/10.1029/2009GL041708

    Article  Google Scholar 

  • Christensen JH, Krishna K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). Cambridge University Press, Cambridge, UK and New York, NY

    Google Scholar 

  • Compo GP et al (2011) The twentieth century reanalysis project. Quart J R Meteor Soc 137:1–28. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • d’Aubert A, Nunn PD (2012) Furious winds and parched islands: tropical cyclones (hurricanes) 1558–1970 and droughts 1722–1987 in the Pacific. XLibris, Bloomington, p 358

    Google Scholar 

  • DelSole T, Tippett MK, Shukla J (2011) A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim 24:909–926

    Article  Google Scholar 

  • Diamond HJ, Renwick JA (2015) The climatological relationship between tropical cyclones in the Southwest Pacific and the southern annular mode. Int J Climatol 35:613–623

    Article  Google Scholar 

  • Diamond HJ, Lorrey AM, Knapp KR, Levinson DH (2013) A Southwest Pacific tropical cyclone climatology and linkages to the El Niño–southern oscillation. J Clim 32:3–25

    Article  Google Scholar 

  • Diamond HJ, Lorrey AM, Renwick JA (2012) Development of an enhanced tropical cyclone tracks database for the Southwest Pacific from 1840 to 2010. Int J Climatol 32:2240–2250

    Google Scholar 

  • Diamond HJ, Lorrey AM, Renwick JA (2015) The climatological relationship between tropical cyclones in the southwest pacific and the Madden–Julian oscillation. Int J Climatol 35:676–686

    Article  Google Scholar 

  • Dowdy AJ (2014) Long-term changes in Australian tropical cyclone numbers. Atmos Sci Lett 15:292–298. https://doi.org/10.1002/asl2.502.

    Article  Google Scholar 

  • Dowdy AJ, Qi L, Jones D, Ramsay H, Fawcett R, Kuleshov Y (2012) Tropical cyclone climatology of the South Pacific Ocean and its relationship to El Niño–southern oscillation. J Clim 25:6108–6122

    Article  Google Scholar 

  • Emanuel KA (1987) The dependence of hurricane intensity on climate. Nature 326:483–485

    Article  Google Scholar 

  • Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367

    Article  Google Scholar 

  • Esler S (2015) Vanuatu post disaster needs assessment: Tropical Cyclone Pam, March 2015. Government of Vanuatu Report, Vanuatu, p 172

    Google Scholar 

  • Esler S (2016) Fiji post disaster needs assessment: Tropical Cyclone Winston, February 2016. Government of Fiji, Fiji Islands, p 160

    Google Scholar 

  • Haig J, Nott J, Reichart G (2014) Australian tropical cyclone activity lower than at any time over the past 550–1,500 years. Nature 505:667–671

    Article  CAS  Google Scholar 

  • Hall JD, Matthews AJ, Karoly DJ (2001) The modulation of tropical cyclone activity in the Australian region by the Madden-Julian oscillation. Mon Weather Rev 129:2970–2982

    Article  Google Scholar 

  • Harper BA, Stroud SA, McCormack M, West S (2008) A review of historical tropical cyclone intensity in northwestern Australia and implications for climate change trend analysis. Aust Meteorol Oceano J 57:121–141

    Google Scholar 

  • Hastings PA (1990) Southern oscillation influence on tropical cyclone activity in the Australian/south-West Pacific region. Int J Climatol 10:291–298

    Article  Google Scholar 

  • Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci 37:515–533

    Article  Google Scholar 

  • Hendon HH, Zhang C, Glick JD (1999) Interannual variation of the Madden–Julian oscillation during austral summer. J Clim 12:2538–2550

    Article  Google Scholar 

  • Holland GJ (1984) On the climatology and structure of tropical cyclones in the Australian/Southwest Pacific region: I. data and tropical storms. Aust Meteorol Mag 32:1–15

    Google Scholar 

  • Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541

    Article  Google Scholar 

  • Hong C-C, Li Y-H, Li T, Lee M-Y (2011) Impacts of Central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys Res Lett 38:L16712. https://doi.org/10.1029/2011GL048821

    Article  Google Scholar 

  • Jourdain NC et al (2011) Mesoscale simulation of tropical cyclones in the South Pacific: climatology and interannual variability. J Clim 24:3–25

    Article  Google Scholar 

  • Kao H-Y, Yu J–Y (2009) Contrasting eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kerr IS (1976) Tropical storms and hurricanes in the Southwest Pacific, November 1939 to April 1969. New Zealand Ministry of Transport, Wellington, p 114

    Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2009) Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science 325:77–80

    Article  CAS  Google Scholar 

  • Kim H-M, Webster PJ, Curry JA (2011) Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J Clim 24:1839–1849

    Article  Google Scholar 

  • Klotzbach PJ (2014) The Madden–Julian Oscillation’s impacts on worldwide tropical cyclone activity. J Clim 27:2317–2330

    Article  Google Scholar 

  • Klotzbach PJ, Landsea CW (2015) Extremely intense hurricanes: revisiting Webster et al. (2005) after 10 years. J Clim 28:7621–7629

    Article  Google Scholar 

  • Knutson TR et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163

    Article  CAS  Google Scholar 

  • Kossin JP, Olander TL, Knapp KR (2013) Trend analysis with a new global record of tropical cyclone intensity. J Clim 26:9960–9976

    Article  Google Scholar 

  • Kossin JP, Emanuel KA, Vecchi GA (2014) The poleward migration of the location of tropical cyclone maximum intensity. Nature 509:349–352

    Article  CAS  Google Scholar 

  • Kug J–S, Jin F–F, An S–I (2009) Two types of El Niño events: cold tongue El Niño and warm Pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kuleshov Y, Qi L, Fawcett R, Jones D (2008) On tropical cyclone activity in the southern hemisphere: trends and the ENSO connection. Geophys Res Lett 35:L14S08. https://doi.org/10.1029/2007GL032983

    Article  Google Scholar 

  • Kuleshov Y, Chane Ming F, Qi L, Chouaibou I, Hoareau C, Roux F, (2009) Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO. Ann Geophys 27(6):2523–2538

    Google Scholar 

  • Kuleshov YR, Fawcett R, Qi L, Trewin B, Jones D, McBride J, Ramsay H (2010) Trends in tropical cyclones in the South Indian Ocean and the South Pacific Ocean. J Geophys Res Atm 115:D01101. https://doi.org/10.1029/2009JD012372

    Article  Google Scholar 

  • Kumar L, Taylor S (2015) Exposure of coastal built assets in the South Pacific to climate risks. Nat Clim Chang 5:992–996

    Article  Google Scholar 

  • Landsea CW, Franklin JL (2013) Atlantic hurricane database uncertainty and presentation of a new database format. Mon Weather Rev 141:3576–3592

    Article  Google Scholar 

  • Landsea CW, Harper BA, Hoarau K, Knaff JA (2006) Can we detect trends in extreme tropical cyclones? Science 313:452–454

    Article  CAS  Google Scholar 

  • LeBec N, Juillet-Leclerc A, Corrège T, Blamart D, Delcroix T (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (southwestern tropical Pacific). Geophys Res Lett 27:3897–3900

    Article  Google Scholar 

  • Leroy A, Wheeler MC (2008) Statistical prediction of weekly tropical cyclone activity in the southern hemisphere. Mon Weather Rev 136:3637–3654

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. https://doi.org/10.1029/2006GL028443

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2000) Modulation of hurricane activity in the Gulf of Mexico by the Madden–Julian oscillation. Science 287:2002–2004

    Article  CAS  Google Scholar 

  • McGray H, Hammil A, Bradley R (2007) Weathering the storm: options for framing adaptation and development. World Resources Institute, Washington, p 57

    Google Scholar 

  • Meehl GA et al (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Moon I-J, Kim S-H, Klotzbach P, Chan JCL (2015) Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of tropical cyclones. Env Res Lett 10. https://doi.org/10.1088/1748-9326/10/10/104004

  • Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V, Pelesikoti N, Tompkins E, Webb A (2014) Small islands. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1613–1654

    Google Scholar 

  • Patricola CM, Wehner M (2018) Anthropogenic influences on major tropical cyclone events. Nature 563:339–346. https://doi.org/10.1038/s41586-018-0673-2

    Article  CAS  Google Scholar 

  • Ramage CS, Hori AM (1981) Meteorological aspects of El Niño. Mon Weather Rev 109:1827–1835

    Article  Google Scholar 

  • Ramsay HA, Camargo SJ, Kim D (2012) Cluster analysis of tropical cyclone tracks in the southern hemisphere. Clim Dyn 39:897–917

    Article  Google Scholar 

  • Revell CG (1981) Tropical cyclones in the southwest Pacific, Nov. 1969 to April 1979. New Zealand Meteorological Service Misc. Pub. 170, p 53

    Google Scholar 

  • Revell CG, Goulter SW (1986) South Pacific tropical cyclones and the southern oscillation. Mon Weather Rev 114:1138–1145

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57. https://doi.org/10.1007/s10584-011-0149-y

    Article  CAS  Google Scholar 

  • Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Sinclair MR (2002) Extratropical transition of Southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes. Mon Weather Rev 130:590–609

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Thompson CS, Ready S, Zheng X (1992) Tropical cyclones in the Southwest Pacific: November 1979 to May 1989. New Zealand Meteorological Service, Wellington, p 35

    Google Scholar 

  • Ting M, Kushnir Y, Seager R, Li C (2009) Forced and natural 20th century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Tory KJ, Dare RA, Davidson NE, McBride JL, Chand SS (2013a) The importance of low-deformation vorticity in tropical cyclone formation. Atmos Chem Phys 13:2115–2132

    Article  CAS  Google Scholar 

  • Tory KJ, Chand SS, McBride JL, Dare R, Ye H (2013b) Projected changes in late 21st century tropical cyclone frequency in 13 coupled climate models from the coupled climate model Intercomparison project. J Clim 26:9946–9959

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Article  Google Scholar 

  • Troup AJ (1965) The southern oscillation. Q J R Meteorol Soc 91:490–506

    Article  Google Scholar 

  • Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896

    Article  Google Scholar 

  • Visher S (1925) Tropical Cyclones of the Pacific. Bernice P. Bishop Museum, Bulletin 20, p 163

    Google Scholar 

  • Walker GT (1923) Correlations in seasonal variations of weather VIII. Mem India Meteorol Dept 24:75–131

    Google Scholar 

  • Walker GT (1924) Correlations in seasonal variations of weather IX. Mem India Meteorol Dept 24:333–345

    Google Scholar 

  • Walsh KJE et al (2016) Tropical cyclones and climate change. WIRES Clim Change 7:65–89. https://doi.org/10.1002/wcc.371

    Article  Google Scholar 

  • Webster PJ, Holland GJ, Curry JA, Chang HR (2005) Changes in Tropical Cyclone Number, Duration, and Intensity in a Warming Environment. Science 309(5742):1844–1846

    Google Scholar 

  • Wheeler MC, Hendon HH, (2004) An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon Weather Rev 132(8):1917–1932

    Google Scholar 

  • Woodruff J, Sriver RL, Lunf DC (2012) Tropical cyclone activity and western North Atlantic stratification over the last millennium: a comparative review with viable connections. J Quaternary Sci 27:337–343

    Article  Google Scholar 

  • Woodruff JD, Irish JL, Camargo SJ (2013) Coastal flooding by tropical cyclones and sea-level rise. Nature 504:44–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savin S. Chand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chand, S.S., Dowdy, A., Bell, S., Tory, K. (2020). A Review of South Pacific Tropical Cyclones: Impacts of Natural Climate Variability and Climate Change. In: Kumar, L. (eds) Climate Change and Impacts in the Pacific. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-32878-8_6

Download citation

Publish with us

Policies and ethics