Skip to main content

Climate Change Scenarios and Projections for the Pacific

  • Chapter
  • First Online:
Climate Change and Impacts in the Pacific

Part of the book series: Springer Climate ((SPCL))

Abstract

Small island countries in the Pacific have characteristics which enhance their vulnerability and reduce their resilience to the effects of climate change, sea-level rise and extreme events. Over the past decade, a number of studies have been undertaken to improve our understanding of climate variability and change in the Pacific. This chapter provides an overview of those studies and discusses possible challenges associated with climate model projections for the small island countries in the Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ashok K, Behera S, Rao AS, Weng HY, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Australian Bureau of Meteorology and CSIRO (2011) Climate change in the Pacific: scientific assessment and new research. Volume 1: regional overview. Volume 2: country reports. Hennessy K, Power S and Cambers G (Scientific Editors), CSIRO, Canberra

    Google Scholar 

  • Australian Bureau of Meteorology and CSIRO (2014) Climate variability, extremes and change in the Western Tropical Pacific: new science and updated country reports. Pacific-Australia Climate Change Science and Adaptation Planning Program Technical Report, Australian Bureau of Meteorology and Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia

    Google Scholar 

  • Bao J, Sherwood SC, Alexander LV, Evans JP (2017) Future increases in extreme precipitation exceed observed scaling rates. Nat Clim Chang 7:128–132

    Article  Google Scholar 

  • Becker M, Meyssignac B, Letetrel C, Llovel W, Cazenave A, Delcroix T (2012) Sea level variations at tropical Pacific islands since 1950. Glob Planet Chang 80–81(1):85–98

    Article  Google Scholar 

  • Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018

    Article  Google Scholar 

  • Brown JR, Moise AF, Delange FP (2012) Changes in the South Pacific convergence zone in IPCC AR4 future climate projections. Clim Dyn 39:1–19

    Article  Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Chang 4:11–116

    Article  Google Scholar 

  • Callaghan J, Power SB (2011) Variability and decline in severe landfalling tropical cyclones over eastern Australia since the late 19th century. Clim Dyn 37:647–662

    Article  Google Scholar 

  • Chand SS, Walsh KJE (2009) Tropical cyclone activity in the Fiji region: spatial patterns and relationship to large-scale circulation. J Clim 22:3877–3893

    Article  Google Scholar 

  • Chand SS, Chambers LE, Waiwai M, Malsale P, Thompson E (2014) Indigenous knowledge for environmental prediction in the Pacific Island countries. Wea Clim Soc 6:445–450

    Article  Google Scholar 

  • Chand SS, Tory KJ, Ye H, Walsh KJE (2017) Projected increase in El Niño-driven tropical cyclone frequency in the Pacific. Nat Clim Chang 7:123–127

    Article  Google Scholar 

  • Church JA et al (2010) Sea-level rise and variability: synthesis and outlook for the future. In: Church JA (ed) Understanding sea-level rise and variability. Wiley-Blackwell, Chichester, pp 402–419

    Chapter  Google Scholar 

  • Church JA, Gregory JM, White NJ, Platten SM, Mitrovica JX (2011) Understanding and projecting sea level change. Oceanography 24:130–143

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1137–1216

    Google Scholar 

  • Church JA, White NJ, Hunter JR (2006) Sea level rise at tropical Pacific and Indian Ocean islands. Global Planet Change 53:155–168. https://doi.org//10.1029/2005GL024826

    Google Scholar 

  • Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397

    Article  CAS  Google Scholar 

  • Cubasch U, Wuebbles D, Chen D, Facchini MC, Frame D, Mahowald N, Winther J-G (2013) Introduction. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, NY

    Google Scholar 

  • Flato G (2011) Earth system models: an overview. WIREs Clim Change 2:783–800

    Article  Google Scholar 

  • Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change. The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the interdecadal Pacific oscillation on the South Pacific convergence zone. Geophys Res Lett 29(13):21-1–21-4

    Article  Google Scholar 

  • García-Serrano J, Cassou C, Douville H, Giannini A, Doblas-Reyes FJ (2017) Revisiting the ENSO teleconnection to the tropical North Atlantic. J Clim 30:6945–6957

    Article  Google Scholar 

  • Gergis JL, Fowler AM (2009) A history of ENSO events since a.D. 1525: implications for future climate change. Clim Chang 92:343–387

    Article  Google Scholar 

  • Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Am Meteorol Soc 79:2715–2725

    Article  Google Scholar 

  • Grant AP, Walsh KJE (2001) Interdecadal variability in north-east Australian tropical cyclone formation. Atmos Sci Lett 2:9–17

    Article  Google Scholar 

  • Griffiths GM, Salinger MJ, Leleu I (2003) Trends in extreme daily rainfall across the South Pacific and relationship to the South Pacific convergence zone. Int J Climatol 23:847–869

    Article  Google Scholar 

  • Grose MR et al (2014) Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int J Climatol 34:3382–3399

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg W (2012) A first look at ENSO in CMIP5. Clivar Exchanges 58:29–32

    Google Scholar 

  • Henley BJ, Gergis J, Karoly DJ, Power SB, Kennedy J, Folland CK (2015) A tripole index for the interdecadal Pacific oscillation. Clim Dyn 45:3077–3090

    Article  Google Scholar 

  • IPCC, (2007): Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel in Climate Change [Solomon, S, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Ayert, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Kim ST, Yu J-Y (2012) The two types of ENSO in CMIP5 models. Geophys Res Lett 39:L11704. https://doi.org/10.1029/2012GL052006

    Article  Google Scholar 

  • Knutti R, Sedláček J (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Chang 3:369–373

    Article  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260

    Article  CAS  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Meehl GA et al (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoto TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. PNAS 107:1833–1837

    Article  CAS  Google Scholar 

  • Moise A et al (2015) Evaluation of CMIP3 and CMIP5 models over the Australian region to inform confidence in projections. Aust Meteorol Oceano J 65:19–53

    Article  Google Scholar 

  • Nakicenovic N et al (2000) Special report on emissions scenarios: a special report of working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 599

    Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520

    Article  CAS  Google Scholar 

  • Nunn P (2007) Climate, environment, and society in the Pacific during the last millennium. Elsevier, Amsterdam, p 316

    Google Scholar 

  • Nunn PD (2013) The end of the Pacific? Effects of sea level rise on Pacific Island livelihoods. Singap J Trop Geogr 34(2):143–171

    Article  Google Scholar 

  • Nurse LA, McLean RF, Agard J, Briguglio LP, Duvat-Magnan V, Pelesikoti N, Tompkins E, Webb A (2014) Small islands. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1613–1654

    Google Scholar 

  • O’Gorman PA (2015) Precipitation extremes under climate change. Curr Clim Change Rep 1:49–59

    Article  Google Scholar 

  • Power S, Colman R (2006) Multi-year predictability in a coupled general circulation model. Clim Dyn 26:247–272

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999a) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Power S, Tsetikin F, Mehta V, Lavery B, Torok S, Holbrook N (1999b) Decadal climate variability in Australia during the twentieth century. Int J Climatol 19:169–184

    Article  Google Scholar 

  • Power S, Delage F, Chung C, Kociuba G, Keay K (2013) Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502:541–545

    Article  CAS  Google Scholar 

  • Power SB, Delage FPD, Chung CTY, Ye H, Murphy BF (2017) Humans have already increased the risk of major disruptions to Pacific rainfall. Nat Commun 8:14368. https://doi.org/10.1038/ncomms14368

    Article  CAS  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Salinger MJ, Renwick JA, Mullan AB (2001) Interdecadal Pacific oscillation and South Pacific climate. Int J Climatol 21:1705–1721

    Article  Google Scholar 

  • Salinger MJ, McGree S, Beucher F, Power SB, Delage F (2014) A new index for variations in the position of the South Pacific convergence zone 1910/11–2011/2012. Clim Dyn 43(3–4):881–892

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim 23: 4651–4668.

    Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Niño in the twenty-first century? J Clim 25:2129–2145

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Trenberth KE (1976) Spatial and temporal variations in the southern oscillation. Quart J R Meteor Soc 102:639–653

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777

    Article  Google Scholar 

  • Trenberth KE, Caron JM (2000) The southern oscillation revisited: sea level pressures, surface temperatures, and precipitation. J Clim 13:4358–4365

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (1987) On the evolution of the southern oscillation. Mon Weather Rev 115:3078–3096

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Article  Google Scholar 

  • Troup AJ (1965) The southern oscillation. Q J R Meteorol Soc 91:490–506

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT, Held IA, Leetma A, Harrison MJ (2006) Weakening of the topical atmospheric circulation due to anthropogenic forcing. Nature 419:73–76

    Article  CAS  Google Scholar 

  • Vincent DG (1994) The South Pacific convergence zone (SPCZ): a review. Mon Weather Rev 122:1949–1970

    Article  Google Scholar 

  • Vincent EM, Lengaigne M, Menkes CE, Jourdain NC, Marchesiello P, Madec G (2011) Interannual variability of the South Pacific convergence zone and implications for tropical cyclone genesis. Clim Dyn 36:1881–1896

    Article  Google Scholar 

  • van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • Walker GT (1923) Correlations in seasonal variations of weather VIII. Mem India Meteorol Dept 24:75–131

    Google Scholar 

  • Walker GT (1924) Correlations in seasonal variations of weather IX. Mem India Meteorol Dept 24:333–345

    Google Scholar 

  • Wang G, Dommenget D, Frauen C (2015) An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Clim Dyn 44:95–114

    Article  Google Scholar 

  • Widlansky M, Webster P, Hoyos C (2011) On the location and orientation of the South Pacific convergence zone. Clim Dyn 36:561–578

    Article  Google Scholar 

  • Widlansky MJ, Timmermann A, Stein K, McGregor S, Schneider N, England MH, Lengaigne M, Cai W (2013) Changes in South Pacific rainfall bands in a warming climate. Nat Clim Chang 3:417–423

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–674

    Article  CAS  Google Scholar 

  • Zhang X, Church JA (2012) Sea level trends, interannual and decadal variability in the Pacific Ocean. J Geophys Res 39:L21701. https://doi.org/10.1029/2012GL053240

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported through funding from the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Programme (NESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savin S. Chand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chand, S.S. (2020). Climate Change Scenarios and Projections for the Pacific. In: Kumar, L. (eds) Climate Change and Impacts in the Pacific. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-32878-8_3

Download citation

Publish with us

Policies and ethics