Skip to main content

Straight to the Point: Reinforcement Learning for User Guidance in Ultrasound

  • Conference paper
  • First Online:
Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis (PIPPI 2019, SUSI 2019)

Abstract

Point of care ultrasound (POCUS) consists in the use of ultrasound imaging in critical or emergency situations to support clinical decisions by healthcare professionals and first responders. In this setting it is essential to be able to provide means to obtain diagnostic data to potentially inexperienced users who did not receive an extensive medical training. Interpretation and acquisition of ultrasound images is not trivial. First, the user needs to find a suitable sound window which can be used to get a clear image, and then he needs to correctly interpret it to perform a diagnosis. Although many recent approaches focus on developing smart ultrasound devices that add interpretation capabilities to existing systems, our goal in this paper is to present a reinforcement learning (RL) strategy which is capable to guide novice users to the correct sonic window and enable them to obtain clinically relevant pictures of the anatomy of interest. We apply our approach to cardiac images acquired from the parasternal long axis (PLAx) view of the left ventricle of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32

    Chapter  Google Scholar 

  2. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  3. Lample, G., Chaplot, D.S.: Playing FPS games with deep reinforcement learning. In: AAAI, pp. 2140–2146 (2017)

    Google Scholar 

  4. Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., Fichtinger, G.: PLUS: open-source toolkit for ultrasound-guided intervention systems. IEEE Trans. Biomed. Eng. 61(10), 2527–2537 (2014)

    Article  Google Scholar 

  5. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  6. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  7. Mnih, V., et al.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  8. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  9. Neumann, D., et al.: A self-taught artificial agent for multi-physics computational model personalization. Med. Image Anal. 34, 52–64 (2016)

    Article  Google Scholar 

  10. Sahba, F., Tizhoosh, H.R., Salama, M.M.: A reinforcement agent for object segmentation in ultrasound images. Expert Syst. Appl. 35(3), 772–780 (2008)

    Article  Google Scholar 

  11. Tokuda, J., et al.: OpenIGTLink: an open network protocol for image-guided therapy environment. Int. J. Med. Robot. Comput. Assist. Surg. 5(4), 423–434 (2009)

    Article  Google Scholar 

  12. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: AAAI, pp. 2094–2100 (2016)

    Google Scholar 

  13. Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., De Freitas, N.: Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Milletari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milletari, F., Birodkar, V., Sofka, M. (2019). Straight to the Point: Reinforcement Learning for User Guidance in Ultrasound. In: Wang, Q., et al. Smart Ultrasound Imaging and Perinatal, Preterm and Paediatric Image Analysis. PIPPI SUSI 2019 2019. Lecture Notes in Computer Science(), vol 11798. Springer, Cham. https://doi.org/10.1007/978-3-030-32875-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32875-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32874-0

  • Online ISBN: 978-3-030-32875-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics