Skip to main content

A 3D Massive MIMO Channel Model for Vehicle-to-Vehicle Communication Environments

  • Chapter
  • First Online:
Channel Modeling in 5G Wireless Communication Systems

Part of the book series: Wireless Networks ((WN))

Abstract

This chapter presents 3-D vehicle massive MIMO antenna array model for V2V communication environments. A spherical wavefront is assumed in the proposed model instead of the plane wavefront assumption used in the conventional MIMO channel model. Using the proposed V2V channel model, we first derive the closed-form expressions for the joint and marginal probability density functions of the angle of departure at the transmitter and angle of arrival at the receiver in the azimuth and elevation planes. We additionally analyze the time and frequency cross-correlation functions for different propagation paths. In the proposed model, we derive the expression of the Doppler spectrum due to the relative motion between the mobile transmitter and mobile receiver. The results show that the proposed 3-D channel model is in close agreement with previously reported results, thereby validating the generalization of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.J. Foschini, M.J. Gans, On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6(3), 311–335 (1998)

    Article  Google Scholar 

  2. P.P. Tayade, V.M. Rohokale, Enhancement of spectral efficiency, coverage and channel capacity for wireless communication towards 5G, in International Conference on Pervasive Computing (ICPC), Pune (2015), pp. 1–5

    Google Scholar 

  3. E.G. Larsson, O. Edfors, F. Tufvesson, T.L. Marzetta, Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)

    Article  Google Scholar 

  4. P. Patcharamaneepakorn, et al., Spectral, energy, and economic efficiency of 5G multicell massive MIMO systems with generalized spatial modulation. IEEE Trans. Veh. Technol. 65(12), 9715–9731 (2016)

    Article  Google Scholar 

  5. C.X. Wang, X. Cheng, D.I. Laurenson, Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges. IEEE Commun. Mag. 47(11), 96–103 (2009)

    Article  Google Scholar 

  6. L. Wood, W.S. Hodgkiss, Understanding the Weichselberger model: a detailed investigation, in IEEE Military Communications Conference, San Diego, CA (2008), pp. 1–7

    Google Scholar 

  7. S.K. Yong, J.S. Thompson, Three-dimensional spatial fading correlation models for compact MIMO receivers. IEEE Trans. Commun. 4(6), 2856–2869 (2005)

    Google Scholar 

  8. F. Harabi, A. Gharsallah, S. Marcos, Three-dimensional antennas array for the estimation of direction of arrival. IET Microw. Antennas Propag. 3(5), 843–849 (2009)

    Article  Google Scholar 

  9. J. Zhou, H. Jiang, H. Kikuchi, Performance of uniform concentric circular arrays in a three-dimensional spatial fading channel model. Wirel. Pers. Commun. 83(4), 2949–2963 (2015)

    Article  Google Scholar 

  10. K. Mammasis, R.W. Stewart, J.S. Thompson, Spatial fading correlation model using mixtures of Von Mises Fisher distributions. IEEE Trans. Wirel. Commun. 8(4), 2046–2055 (2009)

    Article  Google Scholar 

  11. S.Y. Cho, J. Kim, W.Y. Yang, MIMO-OFDM Wireless Communications with MATLAB (Wiley-IEEE Press, Singapore, 2010)

    Book  Google Scholar 

  12. R.B. Ertel, J.H. Reed, Angle and time of arrival statistics for circular and elliptical scattering models. IEEE J. Sel. Areas Commun. 17(11), 1829–1840 (1999)

    Article  Google Scholar 

  13. P. Petrus, J.H. Reed, T.S. Rappaport, Geometrical-based statistical macrocell channel model for mobile environments. IEEE Trans. Commun. 50(3), 495–502 (2002)

    Article  Google Scholar 

  14. A. Abdi, M. Kaveh, A space-time correlation model for multielement antenna systems in mobile fading channels. IEEE J. Sel. Areas Commun. 20(3), 550–560 (2002)

    Article  Google Scholar 

  15. X. Cheng, C.X. Wang, D.I. Laurenson, S. Salous, A.V. Vasilakos, An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Trans. Wirel. Commun. 8(9), 4824–4835 (2009)

    Article  Google Scholar 

  16. H. Jiang, Z.C. Zhang, J. Dang, L. Wu, Analysis of geometric multi-bounced virtual scattering channel model for dense urban street environments. IEEE Trans. Veh. Technol. 66(3), 1903–1912 (2017)

    Article  Google Scholar 

  17. S.J. Nawaz, B.H. Qureshi, N.M. Khan, A generalized 3-D scattering model for a macrocell environment with a directional antenna at the BS. IEEE Trans. Veh. Technol. 59(7), 3193–3204 (2010)

    Article  Google Scholar 

  18. H. Jiang, J. Zhou, H. Kikuchi, Angle and time of arrival statistics for a 3-D pie-cellular-cut scattering channel model. Wirel. Pers. Commun. 78(2), 851–865 (2014)

    Article  Google Scholar 

  19. J. Zhou, H. Jiang, H. Kikuchi, Generalised three-dimensional scattering channel model and its effects on compact multiple-input and multiple-output antenna receiving systems. IET Commun. 9(18), 2177–2187 (2015)

    Article  Google Scholar 

  20. Y. Yuan, C.X. Wang, Y. He, M.M. Alwakeel, e.H.M. Aggoune, 3D wideband non-stationary geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels. IEEE Trans. Wirel. Commun. 14(12), 6883–6895 (2015)

    Article  Google Scholar 

  21. S.C. Kwon, G.L. Stuber, A.V. Lopez, J. Papapolymerou, Geometrically based statistical model for polarized body-area-network channels. IEEE Trans. Veh. Technol. 62(8), 3518–3530 (2013)

    Article  Google Scholar 

  22. S.C. Kwon, G.L. Stuber, Cross-polarization discrimination in vehicle-to-vehicle channels: geometry-based statistical modeling, in IEEE Global Telecommunications Conference GLOBECOM, Miami, FL, December (2010), pp. 1–5

    Google Scholar 

  23. M. Boban, T.T.V. Vinhoza, M. Ferreira, J. Barros, O.K. Tonguz, Impact of vehicles as obstacles in vehicular ad hoc networks. IEEE J. Sel. Areas Commun. 29(1), 15–28 (2011)

    Article  Google Scholar 

  24. A. Paier, et al., Non-WSSUS vehicular channel characterization in highway and urban scenarios at 5.2 GHz using the local scattering function, in International ITG Workshop on Smart Antennas, Vienna, Austria, February (2008), pp. 9–15

    Google Scholar 

  25. T. Marzetta, Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(1), 3590–3600 (2010)

    Article  Google Scholar 

  26. X. Gao, O. Edfors, F. Rusek, F. Tufvesson, Massive MIMO performance evaluation based on measured propagation data. IEEE Trans. Wirel. Commun. 14(7), 3899–3911 (2009)

    Article  Google Scholar 

  27. S. Payami, F. Tufvesson, Channel measurements and analysis for very large array systems at 2.6 GHz, in 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, March (2012), pp. 433–437

    Google Scholar 

  28. T. Zwick, C. Fischer, W. Wiesbeck, A stochastic multipath channel model including path directions for indoor environments. IEEE J. Sel. Areas Commun. 20(6), 1178–1192 (2002)

    Article  Google Scholar 

  29. H. Xiao, A.G. Burr, L. Song, A time-variant wideband spatial channel model based on the 3GPP model, in IEEE Vehicular Technology Conference (VTC), Montreal, QC, September (2006), pp. 1–5

    Google Scholar 

  30. D.S. Baum, J. Hansen, J. Salo, An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM), in 61st Vehicular Technology Conference, Stockholm, Sweden, May (2005), pp. 3132–3136

    Google Scholar 

  31. F. Bohagen, P. Orten, G.E. Oien, Design of optimal high-rank line-of-sight MIMO channels. IEEE Trans. Wirel. Commun. 6(4), 1420–1425 (2007)

    Article  Google Scholar 

  32. F. Bohagen, P. Orten, G.E. Oien, On spherical vs. plane wave modeling of line-of-sight MIMO channels. IEEE Trans. Commun. 57(3), 841–849 (2009)

    Article  Google Scholar 

  33. S.B. Wu, C.X. Wang, H. Aggoune, Non-stationary wideband channel models for massive MIMO systems, in Proceedings of WSCN, Jeddah, Saudi Arabia, December (2013), pp. 1–8

    Google Scholar 

  34. S. Wu, C. Wang, H. Haas, e.M. Aggoune, M.M. Alwakeel, B. Ai, A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans. Wirel. Commun. 14(3), 1434–1446 (2015)

    Article  Google Scholar 

  35. S.B. Wu, C.X. Wang, E.-H.M. Aggoune, A non-stationary 3-d wideband twin-cluster model for 5G massive MIMO channels. IEEE J. Sel. Areas Commun. 32(6), 1207–1218 (2014)

    Article  Google Scholar 

  36. X. Cheng, C.X. Wang, B. Ai, H. Aggoune, Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle Ricean fading channels. IEEE Trans. Intell. Trans. Sys. 15(1), 62–72 (2014)

    Article  Google Scholar 

  37. X. Cheng, C.X. Wang, B. Ai, Envelope level crossing rate and average fade duration of nonisotropic vehicle-to-vehicle Ricean fading channels. IEEE Trans. Intell. Transp. Syst. 15(1), 62–72 (2013)

    Article  Google Scholar 

  38. Q. Zhan, V.K.V. Gottumukkala, A. Yokoyama, H. Minn, A V2V communication system with enhanced multiplicity gain, in Proceedings of the IEEE GLOBECOM Workshop Vehicular Network Evolution, Atlanta, GA, December (2013), pp. 1326–1332

    Google Scholar 

  39. S.K. Yong, J.S. Thompson, The effect of various channel conditions on the performance of different antenna array architectures, in IEEE 58th Vehicular Technology Conference, VTC 2003-Fall, Orlando, FL, October (2003), pp. 198–202

    Google Scholar 

  40. M. Riaz, N.M. Khan, S.J. Nawaz, A generalized 3-D scattering channel model for spatiotemporal statistics in mobile-to-mobile communication environment. IEEE Trans. Veh. Technol. 64(10), 4399–4410 (2015)

    Article  Google Scholar 

  41. S.R. Saunders, A. Aragon-Zavala, Antennas and propagation for wireless communication systems, 2nd edn. (Wiley, West Sussex, 2007)

    Google Scholar 

  42. A.G. Zajic, G.L. Stuber, T.G. Pratt, S.T. Nguyen, Wideband MIMO mobile-to-mobile channels: geometry-based statistical modeling with experimental verification. IEEE Trans. Veh. Technol. 58(2), 517–534 (2009)

    Article  Google Scholar 

  43. A. Ghazal, C.X. Wang, B. Ai, D. Yuan, H. Haas, A non-stationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans. Intell. Transp. Syst. 16(2), 885–897 (2015)

    Google Scholar 

  44. L. Bai, C.X. Wang, S. Wu, H. Wang, Y. Yang, A 3-D wideband multi-confocal ellipsoid model for wireless MIMO communication channels, in IEEE International Conference on Communications (ICC), Kuala Lumpur (2016), pp. 1–6

    Google Scholar 

  45. J. Chen, S. Wu, S. Liu, C. Wang, W. Wang, On the 3-D MIMO channel model based on regular-shaped geometry-based stochastic model, in International Symposium on Antennas and Propagation (ISAP), Hobart, TAS, November (2015), pp. 1–4

    Google Scholar 

  46. N. Avazov, M. Patzold, A geometric street scattering channel model for car-to-car communication systems, in International Conference on Advanced Technologies for Communications (ATC 2011), Da Nang, Vietnam, August (2011), pp. 224–230

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, H., Gui, G. (2020). A 3D Massive MIMO Channel Model for Vehicle-to-Vehicle Communication Environments. In: Channel Modeling in 5G Wireless Communication Systems. Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-32869-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32869-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32868-9

  • Online ISBN: 978-3-030-32869-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics