Skip to main content

A Numerical Approach to Solving the Aerial Inspection Problem

  • Conference paper
  • First Online:
Smart Innovations in Engineering and Technology (ICACON 2017, APCASE 2017)

Abstract

An autonomous aerial inspection using unmanned aerial vehicles (UAVs) requires effective and nearly optimal algorithms for scheduling UAVs. A UAV performing aerial inspection does not need to take photos of inspected objects from exact given points in space. For every inspected object, there is a feasible area (or point) from which clear photos can be taken. The optimization problem is to find points from these areas from which UAV should take photos of objects. These points should be chosen in such a way that the scheduling algorithm, which takes these points as its input, will produce a valuable solution. In this work, for the given feasible areas we find the sequence of visiting these areas and points, to minimize the length of the Hamiltonian cycle consisting of chosen points in a determined sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts, E.H.L., van Laarhoven, P.J.M.: Simulated annealing: a pedestrian review of the theory and some applications. In: Devijver P.A., Kittler J. (eds.) Pattern Recognition Theory and Applications. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 30. Springer, Berlin (1987)

    Chapter  Google Scholar 

  2. Bożejko, W., Wodecki, M.: Parallel evolutionary algorithm for the traveling salesman problem. J. Numer. Anal. Ind. Appl. Math. 2(3–4), 129–137 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Byrd, R.H., Lu, P., Nocedal, J.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MathSciNet  Google Scholar 

  4. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  5. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)

    Article  MathSciNet  Google Scholar 

  6. Imeson, F., Smith, S.L.: Multi-robot task planning and sequencing using the SAT-TSP language. In: IEEE International Conference on Robotics and Automation, pp. 5397–5402 (2015)

    Google Scholar 

  7. Ke-Lin, D., Swamy, M.N.S.: Search and optimization by metaheuristics, pp. 29–36. Springer, New York City (2016)

    Google Scholar 

  8. Kraft D.: A software package for sequential quadratic programming. Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt (1988)

    Google Scholar 

  9. Mathew, N., Smith, S.L., Waslander, S.L.: Multirobot rendezvous planning for recharging in persistent tasks. IEEE Trans. Robot. 31(1), 128–142 (2015)

    Article  Google Scholar 

  10. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  11. Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    Article  MathSciNet  Google Scholar 

  12. Snyder, L., Daskin, M.: A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 17(1), 38–53 (2006)

    Article  MathSciNet  Google Scholar 

  13. Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control of non-deterministic systems for a computationally efficient fragment of temporal logic. In: IEEE Conference on Decision and Control, pp. 3197–3204 (2013)

    Google Scholar 

  14. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Science Centre of Poland, grant OPUS no. DEC 2017/25/B/ST7/02181 and by the grant no. POIR.01. 01.01-00-1176/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radosław Grymin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grymin, R., Bożejko, W., Pempera, J. (2020). A Numerical Approach to Solving the Aerial Inspection Problem. In: Klempous, R., Nikodem, J. (eds) Smart Innovations in Engineering and Technology. ICACON APCASE 2017 2017. Topics in Intelligent Engineering and Informatics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-32861-0_17

Download citation

Publish with us

Policies and ethics