Skip to main content

Mining Complex Biomedical Literature for Actionable Knowledge on Rare Diseases

  • Chapter
  • First Online:
Approaching Complex Diseases

Abstract

Complex scientific phenomena and processes underpin drug discovery and development that have historically been addressed through iterative and statistical strategies to derive knowledge from data using labor intensive, inefficient, and costly practices. Complicating the task of data analysis even further, a lot of useful information about drug activities has been historically described in publications and scientific reports in writing. This naturally required reading by the experts to understand the reported facts and extract useful knowledge from publications, a manual, and therefore, non-scalable process. The opportunity now exists to extract knowledge from reading sources using modern text mining to rapidly and affordably identify and develop new or repurposed drug candidates. Nowhere could this be more important than addressing the unmet need in rare diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hickey, A.J., and H.D.C. Smyth. 2011. Pharmaco-complexity. Boston: Springer US.

    Book  Google Scholar 

  2. Hunter, L.E. 2017. Knowledge-based biomedical data science. Data Science Journal 1: 1–7. https://doi.org/10.3233/DS-170001.

    Article  Google Scholar 

  3. Przybyła, P., M. Shardlow, S. Aubin, R. Bossy, R. Eckart de Castilho, S. Piperidis, J. McNaught, and S. Ananiadou. 2016. Text mining resources for the life sciences. Database 2016. https://doi.org/10.1093/database/baw145.

  4. Pan, W., Z. Li, Y. Zhang, and C. Weng. 2018. The new hardware development trend and the challenges in data management and analysis. Data Science and Engineering 3: 263–276. https://doi.org/10.1007/s41019-018-0072-6.

    Article  Google Scholar 

  5. DiMasi, J.A., H.G. Grabowski, and R.W. Hansen. 2016. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics 47: 20–33. https://doi.org/10.1016/J.JHEALECO.2016.01.012.

    Article  PubMed  Google Scholar 

  6. Baxter, K., E. Horn, N. Gal-Edd, K. Zonno, J. O’Leary, P.F. Terry, and S.F. Terry. 2013. An end to the myth: There is no drug development pipeline. Science Translational Medicine 5: 171cm1. https://doi.org/10.1126/scitranslmed.3003505.

    Article  PubMed  Google Scholar 

  7. Zhao, M., and D.-Q.Q. Wei. 2018. Rare diseases: Drug discovery and informatics resource. Interdisciplinary Sciences: Computational Life Sciences 10: 195–204. https://doi.org/10.1007/s12539-017-0270-3.

    Article  Google Scholar 

  8. Valdez, R., L. Ouyang, and J. Bolen. 2016. Public health and rare diseases: oxymoron no more. Preventing Chronic Disease 13: 150491. https://doi.org/10.5888/pcd13.150491.

    Article  Google Scholar 

  9. Kakkis, E.D., M. O’Donovan, G. Cox, M. Hayes, F. Goodsaid, P. Tandon, P. Furlong, S. Boynton, M. Bozic, M. Orfali, and M. Thornton. 2015. Recommendations for the development of rare disease drugs using the accelerated approval pathway and for qualifying biomarkers as primary endpoints. Orphanet Journal of Rare Diseases 10: 16. https://doi.org/10.1186/s13023-014-0195-4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Angelis, A., D. Tordrup, and P. Kanavos. 2015. Socio-economic burden of rare diseases: A systematic review of cost of illness evidence. Health Policy 119: 964–979. https://doi.org/10.1016/j.healthpol.2014.12.016.

    Article  PubMed  Google Scholar 

  11. Vitali, F., L.D. Cohen, A. Demartini, A. Amato, V. Eterno, A. Zambelli, and R. Bellazzi. 2016. A network- based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer. PLoS One 11: e0162407. https://doi.org/10.1371/journal.pone.0162407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ekins, S. 2017. Industrializing rare disease therapy discovery and development. Nature Biotechnology 35: 117–118. https://doi.org/10.1038/nbt.3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roos M, López Martin E, Wilkinson MD (2017) Preparing data at the source to Foster interoperability across rare disease resources. In: de la Posada Paz M, Taruscio D, Groft S (eds) Rare diseases epidemiology: Update and overview. Advances in Experimental Medicine and Biology. Springer, Cham, pp 165–179

    Chapter  Google Scholar 

  14. Kodra, Y., M. Posada de la Paz, A. Coi, M. Santoro, F. Bianchi, F. Ahmed, Y.R. Rubinstein, J. Weinbach, and D. Taruscio. 2017. Data quality in rare diseases registries. In Advances in experimental medicine and biology, 149–164. Cham: Springer.

    Google Scholar 

  15. Litterman, N.K., M. Rhee, D.C. Swinney, and S. Ekins. 2014. Collaboration for rare disease drug discovery research. F1000Research 3: 261. https://doi.org/10.12688/f1000research.5564.1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nguyen, D.T., S. Mathias, C. Bologa, S. Brunak, N. Fernandez, A. Gaulton, A. Hersey, J. Holmes, L.J. Jensen, A. Karlsson, G. Liu, A. Ma’ayan, G. Mandava, S. Mani, S. Mehta, J. Overington, J. Patel, A.D. Rouillard, S. Schürer, T. Sheils, A. Simeonov, L.A. Sklar, N. Southall, O. Ursu, D. Vidovic, A. Waller, J. Yang, A. Jadhav, T.I. Oprea, and R. Guha. 2017. Pharos: Collating protein information to shed light on the druggable genome. Nucleic Acids Research 45: D995–D1002. https://doi.org/10.1093/nar/gkw1072.

    Article  CAS  PubMed  Google Scholar 

  17. Landrum, M.J., J.M. Lee, M. Benson, G.R. Brown, C. Chao, S. Chitipiralla, B. Gu, J. Hart, D. Hoffman, W. Jang, K. Karapetyan, K. Katz, C. Liu, Z. Maddipatla, A. Malheiro, K. McDaniel, M. Ovetsky, G. Riley, G. Zhou, J.B. Holmes, B.L. Kattman, and D.R. Maglott. 2018. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Research 46: D1062–D1067. https://doi.org/10.1093/nar/gkx1153.

    Article  CAS  PubMed  Google Scholar 

  18. Landrum, M.J., J.M. Lee, G.R. Riley, W. Jang, W.S. Rubinstein, D.M. Church, and D.R. Maglott. 2014. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research 42: D980–D985. https://doi.org/10.1093/nar/gkt1113.

    Article  CAS  PubMed  Google Scholar 

  19. Kaufmann, P., A.R. Pariser, and C. Austin. 2018. From scientific discovery to treatments for rare diseases – The view from the National Center for Advancing Translational Sciences – Office of Rare Diseases Research. Orphanet Journal of Rare Diseases 13: 196. https://doi.org/10.1186/s13023-018-0936-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fourches, D., E. Muratov, and A. Tropsha. 2010. Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. Journal of Chemical Information and Modeling 50: 1189–1204. https://doi.org/10.1021/ci100176x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. ———. 2016. Trust, but Verify II: A practical guide to chemogenomics data curation. Journal of Chemical Information and Modeling 56: 1243–1252. https://doi.org/10.1021/acs.jcim.6b00129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. ———. 2015. Curation of chemogenomics data. Nature Chemical Biology 11: 535–535. https://doi.org/10.1038/nchembio.1881.

    Article  CAS  PubMed  Google Scholar 

  23. Rognan, D. 2017. The impact of in silico screening in the discovery of novel and safer drug candidates. Pharmacology & Therapeutics 175: 47–66. https://doi.org/10.1016/j.pharmthera.2017.02.034.

    Article  CAS  Google Scholar 

  24. Makhouri, F.R., and J.B. Ghasemi. 2019. Combating diseases with computational strategies used for drug design and discovery. Current Topics in Medicinal Chemistry 18: 2743–2773. https://doi.org/10.2174/1568026619666190121125106.

    Article  CAS  Google Scholar 

  25. Henry, S., and B.T. McInnes. 2017. Literature based discovery: Models, methods, and trends. Journal of Biomedical Informatics 74: 20–32. https://doi.org/10.1016/j.jbi.2017.08.011.

    Article  PubMed  Google Scholar 

  26. Swanson, D.R. 1988. Migraine and magnesium: Eleven neglected connections. Perspectives in Biology and Medicine 31: 526–557.

    Article  CAS  Google Scholar 

  27. Kostoff, R.N., and M.B. Briggs. 2008. Literature-Related Discovery (LRD): Potential treatments for Parkinson’s disease. Technological Forecasting and Social Change 75: 226–238. https://doi.org/10.1016/j.techfore.2007.11.007.

    Article  Google Scholar 

  28. Kostoff, R.N., M.B. Briggs, and T.J. Lyons. 2008. Literature-related discovery (LRD): Potential treatments for multiple sclerosis. Technological Forecasting and Social Change 75: 239–255. https://doi.org/10.1016/j.techfore.2007.11.002.

    Article  Google Scholar 

  29. Choi, B.-K., T. Dayaram, N. Parikh, A.D. Wilkins, M. Nagarajan, I.B. Novikov, B.J. Bachman, S.Y. Jung, P.J. Haas, J.L. Labrie, C.R. Pickering, A.K. Adikesavan, S. Regenbogen, L. Kato, A. Lelescu, C.M. Buchovecky, H. Zhang, S.H. Bao, S. Boyer, G. Weber, K.L. Scott, Y. Chen, S. Spangler, L.A. Donehower, and O. Lichtarge. 2018. Literature-based automated discovery of tumor suppressor p53 phosphorylation and inhibition by NEK2. Proceedings of the National Academy of Sciences 115: 10666–10671. https://doi.org/10.1073/pnas.1806643115.

    Article  CAS  Google Scholar 

  30. La, M.K., A. Sedykh, D. Fourches, E. Muratov, and A. Tropsha. 2018. Predicting adverse drug effects from literature- and database-mined assertions. Drug Safety 41: 1059–1072. https://doi.org/10.1007/s40264-018-0688-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Willighagen, E.L., A. Waagmeester, O. Spjuth, P. Ansell, A.J. Williams, V. Tkachenko, J. Hastings, B. Chen, and D.J. Wild. 2013. The ChEMBL database as linked open data. Journal of Cheminformatics 5: 23. https://doi.org/10.1186/1758-2946-5-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaulton, A., A. Hersey, M. Nowotka, A.P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L.J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman, A. Karlsson, M.P. Magariños, J.P. Overington, G. Papadatos, I. Smit, and A.R. Leach. 2017. The ChEMBL database in 2017. Nucleic Acids Research 45: D945–D954. https://doi.org/10.1093/nar/gkw1074.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y., T. Suzek, J. Zhang, J. Wang, S. He, T. Cheng, B.A. Shoemaker, A. Gindulyte, and S.H. Bryant. 2014. PubChem BioAssay: 2014 update. Nucleic Acids Research 42: D1075–D1082. https://doi.org/10.1093/nar/gkt978.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Y., J. Xiao, T.O. Suzek, J. Zhang, J. Wang, Z. Zhou, L. Han, K. Karapetyan, S. Dracheva, B.A. Shoemaker, E. Bolton, A. Gindulyte, and S.H. Bryant. 2012. PubChem’s BioAssay database. Nucleic Acids Research 40: D400–D412. https://doi.org/10.1093/nar/gkr1132.

    Article  CAS  PubMed  Google Scholar 

  35. Roberts, R.J. 2001. PubMed central: The GenBank of the published literature. Proceedings of the National Academy of Sciences 98: 381–382. https://doi.org/10.1073/pnas.98.2.381.

    Article  CAS  Google Scholar 

  36. NLM. 2019. Medical subject headings. https://www.nlm.nih.gov/mesh/meshhome.html. Accessed 3 Jun 2019.

  37. Baker, N.C., and B.M. Hemminger. 2010. Mining connections between chemicals, proteins, and diseases extracted from Medline annotations. Journal of Biomedical Informatics 43: 510–519. https://doi.org/10.1016/j.jbi.2010.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kreimeyer, K., M. Foster, A. Pandey, N. Arya, G. Halford, S.F. Jones, R. Forshee, M. Walderhaug, and T. Botsis. 2017. Natural language processing systems for capturing and standardizing unstructured clinical information: A systematic review. Journal of Biomedical Informatics 73: 14–29. https://doi.org/10.1016/j.jbi.2017.07.012.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Funk, C., W. Baumgartner, B. Garcia, C. Roeder, M. Bada, K.B. Cohen, L.E. Hunter, and K. Verspoor. 2014. Large-scale biomedical concept recognition: An evaluation of current automatic annotators and their parameters. BMC Bioinformatics 15: 59. https://doi.org/10.1186/1471-2105-15-59.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Venkatesan, A., J.-H. Kim, F. Talo, M. Ide-Smith, J. Gobeill, J. Carter, R. Batista-Navarro, S. Ananiadou, P. Ruch, and J. McEntyre. 2016. SciLite: A platform for displaying text-mined annotations as a means to link research articles with biological data. Wellcome Open Research 1: 25. https://doi.org/10.12688/wellcomeopenres.10210.2.

    Article  PubMed  Google Scholar 

  41. Jurca, G., O. Addam, A. Aksac, S. Gao, T. Özyer, D. Demetrick, and R. Alhajj. 2016. Integrating text mining, data mining, and network analysis for identifying genetic breast cancer trends. BMC Research Notes 9: 236. https://doi.org/10.1186/s13104-016-2023-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, J., and B.-Q. Fu. 2018. The research on gene-disease association based on text-mining of PubMed. BMC Bioinformatics 19: 37. https://doi.org/10.1186/s12859-018-2048-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. IFPMA. 2017. The pharmaceutical industry and global health: Facts and figures. https://www.ifpma.org/wp-content/uploads/2017/02/IFPMA-Facts-And-Figures-2017.pdf. Accessed 7 Jun 2019.

  44. Arrowsmith, J. 2011. Trial watch: Phase II failures: 2008–2010. Nature Reviews. Drug Discovery 10: 328–329. https://doi.org/10.1038/nrd3439.

    Article  CAS  PubMed  Google Scholar 

  45. Ashburn, T.T., and K.B. Thor. 2004. Drug repositioning: Identifying and developing new uses for existing drugs. Nature Reviews. Drug Discovery 3: 673–683. https://doi.org/10.1038/nrd1468.

    Article  CAS  PubMed  Google Scholar 

  46. Langedijk, J., A.K. Mantel-Teeuwisse, D.S. Slijkerman, and M.-H.D.B. Schutjens. 2015. Drug repositioning and repurposing: Terminology and definitions in literature. Drug Discovery Today 20: 1027–1034. https://doi.org/10.1016/j.drudis.2015.05.001.

    Article  PubMed  Google Scholar 

  47. Cha, Y., T. Erez, I.J. Reynolds, D. Kumar, J. Ross, G. Koytiger, R. Kusko, B. Zeskind, S. Risso, E. Kagan, S. Papapetropoulos, I. Grossman, and D. Laifenfeld. 2018. Drug repurposing from the perspective of pharmaceutical companies. British Journal of Pharmacology 175: 168–180. https://doi.org/10.1111/bph.13798.

    Article  CAS  PubMed  Google Scholar 

  48. Nosengo, N. 2016. Can you teach old drugs new tricks? Nature 534: 314–316. https://doi.org/10.1038/534314a.

    Article  PubMed  Google Scholar 

  49. Hernandez, J.J., M. Pryszlak, L. Smith, C. Yanchus, N. Kurji, V.M. Shahani, and S.V. Molinski. 2017. Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Frontiers in Oncology 7: 273. https://doi.org/10.3389/fonc.2017.00273.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bio. 2016. Clinical development success rates. https://www.bio.org/sites/default/files/Clinical Development Success Rates 2006-2015 - BIO, Biomedtracker, Amplion 2016.pdf. Accessed 19 Jun 2019.

  51. Pushpakom, S., F. Iorio, P.A. Eyers, K.J. Escott, S. Hopper, A. Wells, A. Doig, T. Guilliams, J. Latimer, C. McNamee, A. Norris, P. Sanseau, D. Cavalla, and M. Pirmohamed. 2019. Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery 18: 41–58. https://doi.org/10.1038/nrd.2018.168.

    Article  CAS  PubMed  Google Scholar 

  52. Langtry, H.D., and A. Markham. 1999. Sildenafil. Drugs 57: 967–989. https://doi.org/10.2165/00003495-199957060-00015.

    Article  CAS  PubMed  Google Scholar 

  53. Franks, M.E., G.R. Macpherson, and W.D. Figg. 2004. Thalidomide. Lancet 363: 1802–1811. https://doi.org/10.1016/S0140-6736(04)16308-3.

    Article  CAS  PubMed  Google Scholar 

  54. NCI. 2006. Thalidomide. https://www.cancer.gov/about-cancer/treatment/drugs/thalidomide?redirect=true. Accessed 7 Jun 2019.

  55. Baker, N.C., S. Ekins, A.J. Williams, and A. Tropsha. 2018. A bibliometric review of drug repurposing. Drug Discovery Today 23: 661–672. https://doi.org/10.1016/j.drudis.2018.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Novac, N. 2013. Challenges and opportunities of drug repositioning. Trends in Pharmacological Sciences 34: 267–272. https://doi.org/10.1016/j.tips.2013.03.004.

    Article  CAS  PubMed  Google Scholar 

  57. Ding, X. 2016. Drug repositioning needs a rethink. Nature 535: 355–355. https://doi.org/10.1038/535355d.

    Article  CAS  PubMed  Google Scholar 

  58. Delavan, B., R. Roberts, R. Huang, W. Bao, W. Tong, and Z. Liu. 2018. Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discovery Today 23: 382–394. https://doi.org/10.1016/j.drudis.2017.10.009.

    Article  CAS  PubMed  Google Scholar 

  59. Sun, W., W. Zheng, and A. Simeonov. 2017. Drug discovery and development for rare genetic disorders. American Journal of Medical Genetics. Part A 173: 2307–2322. https://doi.org/10.1002/ajmg.a.38326.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wei, C.-H., H.-Y. Kao, and Z. Lu. 2013. PubTator: A web-based text mining tool for assisting biocuration. Nucleic Acids Research 41: W518–W522. https://doi.org/10.1093/nar/gkt441.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hughes, J.P., S. Rees, S.B. Kalindjian, and K.L. Philpott. 2011. Principles of early drug discovery. British Journal of Pharmacology 162: 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Capuzzi, S.J., T.E. Thornton, K. Liu, N. Baker, W.I. Lam, C. O’Banion, E.N. Muratov, D. Pozefsky, A. Tropsha, C.P. O’Banion, E.N. Muratov, D. Pozefsky, and A. Tropsha. 2018. Chemotext: A publicly available web server for mining drug–target–disease relationships in PubMed. Journal of Chemical Information and Modeling 58: 212–218. https://doi.org/10.1021/acs.jcim.7b00589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reichardt, P. 2018. The story of Imatinib in GIST – A journey through the development of a targeted therapy. Oncology Research Treatment 41: 472–477. https://doi.org/10.1159/000487511.

    Article  CAS  PubMed  Google Scholar 

  64. Fuehrer, N.E., A.M. Marchevsky, and J. Jagirdar. 2009. Presence of c-KIT-positive mast cells in obliterative bronchiolitis from diverse causes. Archives of Pathology & Laboratory Medicine 133: 1420–1425. https://doi.org/10.1043/1543-2165-133.9.1420.

    Article  Google Scholar 

  65. Cahill, K.N., H.R. Katz, J. Cui, J. Lai, S. Kazani, A. Crosby-Thompson, D. Garofalo, M. Castro, N. Jarjour, E. DiMango, S. Erzurum, J.L. Trevor, K. Shenoy, V.M. Chinchilli, M.E. Wechsler, T.M. Laidlaw, J.A. Boyce, and E. Israel. 2017. KIT inhibition by Imatinib in patients with severe refractory asthma. The New England Journal of Medicine 376: 1911–1920. https://doi.org/10.1056/NEJMoa1613125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rappaport, N., M. Twik, I. Plaschkes, R. Nudel, T.I. Stein, J. Levitt, M. Gershoni, C.P. Morrey, M. Safran, and D. Lancet. 2017. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Research 45: D877–D887. https://doi.org/10.1093/nar/gkw1012.

    Article  CAS  PubMed  Google Scholar 

  67. Putkowski, S. 2010. The National Organization for Rare Disorders (NORD). NASN School Nurse 25: 38–41. https://doi.org/10.1177/1942602X09352796.

    Article  PubMed  Google Scholar 

  68. Lewis, J., M. Snyder, and H. Hyatt-Knorr. 2017. Marking 15 years of the genetic and rare diseases information center. Translational Science of Rare Diseases 2: 77–88. https://doi.org/10.3233/TRD-170011.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bi, Y., M. Might, H. Vankayalapati, and B. Kuberan. 2017. Repurposing of proton pump inhibitors as first identified small molecule inhibitors of endo-β-N-acetylglucosaminidase (ENGase) for the treatment of NGLY1 deficiency, a rare genetic disease. Bioorganic & Medicinal Chemistry Letters 27: 2962–2966. https://doi.org/10.1016/j.bmcl.2017.05.010.

    Article  CAS  Google Scholar 

  70. Tricco, A.C., W. Zarin, E. Lillie, S. Jeblee, R. Warren, P.A. Khan, R. Robson, B. Pham, G. Hirst, and S.E. Straus. 2018. Utility of social media and crowd-intelligence data for pharmacovigilance: A scoping review. BMC Medical Informatics and Decision Making 18: 38. https://doi.org/10.1186/s12911-018-0621-y.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chunara, R., J.R. Andrews, and J.S. Brownstein. 2012. Social and news media enable estimation of epidemiological patterns early in the 2010 Haitian cholera outbreak. The American Journal of Tropical Medicine and Hygiene 86: 39–45. https://doi.org/10.4269/ajtmh.2012.11-0597.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kagashe, I., Z. Yan, and I. Suheryani. 2017. Enhancing seasonal influenza surveillance: Topic analysis of widely used medicinal drugs using twitter data. Journal of Medical Internet Research 19: e315. https://doi.org/10.2196/jmir.7393.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Reece, A.G., A.J. Reagan, K.L.M. Lix, P.S. Dodds, C.M. Danforth, and E.J. Langer. 2017. Forecasting the onset and course of mental illness with twitter data. Scientific Reports 7: 13006. https://doi.org/10.1038/s41598-017-12961-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Adrover, C., T. Bodnar, Z. Huang, A. Telenti, and M. Salathé. 2015. Identifying adverse effects of HIV drug treatment and associated sentiments using twitter. JMIR Public Health and Surveillance 1: e7. https://doi.org/10.2196/publichealth.4488.

    Article  PubMed  PubMed Central  Google Scholar 

  75. MacKinlay, A., H. Aamer, and A.J. Yepes. 2017. Detection of adverse drug reactions using medical named entities on twitter. AMIA Annual Symposium Proceedings. AMIA Symposium 2017: 1215–1224.

    PubMed  Google Scholar 

  76. Rangarajan, S., N.B. Bone, A.A. Zmijewska, S. Jiang, D.W. Park, K. Bernard, M.L. Locy, S. Ravi, J. Deshane, R.B. Mannon, E. Abraham, V. Darley-Usmar, V.J. Thannickal, and J.W. Zmijewski. 2018. Metformin reverses established lung fibrosis in a bleomycin model. Nature Medicine 24: 1121–1127. https://doi.org/10.1038/s41591-018-0087-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gross, C., A. Banerjee, D. Tiwari, F. Longo, A.R. White, A.G. Allen, L.M. Schroeder-Carter, J.C. Krzeski, N.A. Elsayed, R. Puckett, E. Klann, R.A. Rivero, S.L. Gourley, and G.J. Bassell. 2019. Isoform-selective phosphoinositide 3-kinase inhibition ameliorates a broad range of fragile X syndrome-associated deficits in a mouse model. Neuropsychopharmacology 44: 324–333. https://doi.org/10.1038/s41386-018-0150-5.

    Article  CAS  PubMed  Google Scholar 

  78. Zogenix. 2019. Zogenix submits new drug application to U.S. Food & Drug Administration and Marketing authorization application to European Medicines Agency for FINTEPLA® for the treatment of Dravet syndrome – Zogenix, Inc. https://zogenixinc.gcs-web.com/news-releases/news-release-details/zogenix-submits-new-drug-application-us-food-drug-administration. Accessed 7 Jun 2019.

  79. Vanhaelen, Q., P. Mamoshina, A.M. Aliper, A. Artemov, K. Lezhnina, I. Ozerov, I. Labat, and A. Zhavoronkov. 2017. Design of efficient computational workflows for in silico drug repurposing. Drug Discovery Today 22: 210–222. https://doi.org/10.1016/j.drudis.2016.09.019.

    Article  CAS  PubMed  Google Scholar 

  80. Ferreira, L.G., and A.D. Andricopulo. 2016. Drug repositioning approaches to parasitic diseases: A medicinal chemistry perspective. Drug Discovery Today 21: 1699–1710. https://doi.org/10.1016/j.drudis.2016.06.021.

    Article  CAS  PubMed  Google Scholar 

  81. Williams, K., E. Bilsland, A. Sparkes, W. Aubrey, M. Young, L.N. Soldatova, K. De Grave, J. Ramon, M. de Clare, W. Sirawaraporn, S.G. Oliver, and R.D. King. 2015. Cheaper faster drug development validated by the repositioning of drugs against neglected tropical diseases. Journal of the Royal Society, Interface 12: 20141289–20141289. https://doi.org/10.1098/rsif.2014.1289.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Alves, V.M., A. Golbraikh, S.J. Capuzzi, K. Liu, W.I. Lam, D.R. Korn, D. Pozefsky, C.H. Andrade, E.N. Muratov, and A. Tropsha. 2018. Multi-descriptor read across (MuDRA): A simple and transparent approach for developing accurate quantitative structure–activity relationship models. Journal of Chemical Information and Modeling 58: 1214–1223. https://doi.org/10.1021/acs.jcim.8b00124.

    Article  CAS  PubMed  Google Scholar 

  83. Ekins, S., A.J. Williams, M.D. Krasowski, and J.S. Freundlich. 2011. In silico repositioning of approved drugs for rare and neglected diseases. Drug Discovery Today 16: 298–310. https://doi.org/10.1016/j.drudis.2011.02.016.

    Article  PubMed  Google Scholar 

  84. Neves, B.J., R.C. Braga, J.C.B. Bezerra, P.V.L. Cravo, and C.H. Andrade. 2015. In silico repositioning chemogenomics strategy identifies new erugs with potential activity against multiple life stages of Schistosoma mansoni. PLoS Neglected Tropical Diseases 9: e3435. https://doi.org/10.1371/journal.pntd.0003435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Govindaraj, R.G., M. Naderi, M. Singha, J. Lemoine, and M. Brylinski. 2018. Large-scale computational drug repositioning to find treatments for rare diseases. NPJ Systems Biology and Applications 4: 13. https://doi.org/10.1038/s41540-018-0050-7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sun, P., J. Guo, R. Winnenburg, and J. Baumbach. 2017. Drug repurposing by integrated literature mining and drug–gene–disease triangulation. Drug Discovery Today 22: 615–619. https://doi.org/10.1016/j.drudis.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  87. Karatzas, E., M.M. Bourdakou, G. Kolios, and G.M. Spyrou. 2017. Drug repurposing in idiopathic pulmonary fibrosis filtered by a bioinformatics-derived composite score. Scientific Reports 7: 12569. https://doi.org/10.1038/s41598-017-12849-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alves, V.M., Capuzzi, S.J., Baker, N., Muratov, E.N., Trospsha, A., Hickey, A.J. (2020). Mining Complex Biomedical Literature for Actionable Knowledge on Rare Diseases. In: Bizzarri, M. (eds) Approaching Complex Diseases. Human Perspectives in Health Sciences and Technology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-32857-3_4

Download citation

Publish with us

Policies and ethics