Skip to main content

Critical Steps in Epithelial-Mesenchymal Transition as Target for Cancer Treatment

  • Chapter
  • First Online:
Approaching Complex Diseases

Abstract

Epithelial-mesenchymal transition (EMT) is one of key triggers of metastasis in different malignant tumors and thereby represents a promising target to abrogate cancer progression. Herein, we aimed to systematize the information regarding steps of EMT that can be druggable and potential therapeutics that can be used to suppress epithelial-mesenchymal plasticity. EMT can be targeted through its suppression or reversal in cancer cells directly. Despite a number of studies that demonstrate a high efficiency of EMT suppression or reversal (mesenchymal-epithelial transition, MET) and inhibition of cancer progression using natural and chemically-synthesized compounds, these strategies are challenging due to potential unfavorable effects on normal tissues because of EMT involvement in physiological processes and promoting metastasis in which MET is needed for switching from micrometastasis to macrometastasis. The most promising and “safe” strategies to overcome EMT-related cancer progression can be targeting oncogenic mutations that lead to the induction of EMT, reprogramming tumor microenvironment towards anti-tumor state or suppression of inflammation, and differentiation of cancer cells to a completely mesenchymal phenotype or other cell types. However, further preclinical and clinical studies are needed to ascertain whether these approaches are safe and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalluri, R., and R.A. Weinberg. 2009. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation 119 (6): 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamouille, S., J. Xu, and R. Derynck. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nature Reviews. Molecular Cell Biology 15 (3): 178–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nieto, M.A., R.Y. Huang, R.A. Jackson, and J.P. Thiery. 2016. EMT: 2016. Cell 166 (1): 21–45.

    Google Scholar 

  4. Tsai, J.H., and J. Yang. 2013. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes & Development 27 (20): 2192–2206.

    Article  CAS  Google Scholar 

  5. Sui, H., L. Zhu, W. Deng, and Q. Li. 2014. Epithelial-mesenchymal transition and drug resistance: Role, molecular mechanisms, and therapeutic strategies. Oncology Research and Treatment 37 (10): 584–589.

    Article  CAS  PubMed  Google Scholar 

  6. Du, B., and J.S. Shim. 2016. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21 (7): E965.

    Article  PubMed  CAS  Google Scholar 

  7. Voon, D.C., R.Y. Huang, R.A. Jackson, and J.P. Thiery. 2017. The EMT spectrum and therapeutic opportunities. Molecular Oncology 11 (7): 878–891.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cho, E.S., H.E. Kang, N.H. Kim, and J.I. Yook. 2019. Therapeutic implications of cancer epithelial-mesenchymal transition (EMT). Archives of Pharmacal Research 42 (1): 14–24.

    Article  CAS  PubMed  Google Scholar 

  9. Bizzarri, M., A. Cucina, and S. Proietti. 2017. Tumor reversion: mesenchymal-epithelial transition as a critical step in managing the tumor-microenvironment cross-talk. Current Pharmaceutical Design 23 (32): 4705–4715.

    Article  CAS  PubMed  Google Scholar 

  10. Jung, H.Y., L. Fattet, and J. Yang. 2015. Molecular pathways: linking tumor microenvironment to epithelial-mesenchymal transition in metastasis. Clinical Cancer Research 21 (5): 962–968.

    Article  CAS  PubMed  Google Scholar 

  11. Wigerup, C., S. Pahlman, and D. Bexell. 2016. Therapeutic targeting of hypoxia and hypoxia-inducible factors in cancer. Pharmacology & Therapeutics 164: 152–169.

    Article  CAS  Google Scholar 

  12. Jolly, M.K., S.C. Tripathi, D. Jia, S.M. Mooney, M. Celiktas, S.M. Hanash, S.A. Mani, K.J. Pienta, E. Ben-Jacob, and H. Levine. 2016. Stability of the hybrid epithelial/mesenchymal phenotype. Oncotarget 7 (19): 27067–27084.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bocci, F., M.K. Jolly, S.C. Tripathi, M. Aguilar, S.M. Hanash, H. Levine, and J.N. Onuchic. 2017. Numb prevents a complete epithelial-mesenchymal transition by modulating Notch signalling. Journal of the Royal Society Interface 14 (136): 20170512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ishay-Ronen, D., M. Diepenbruck, R.K.R. Kalathur, N. Sugiyama, S. Tiede, R. Ivanek, G. Bantug, M.F. Morini, J. Wang, C. Hess, and G. Christofori. 2019. Gain fat-lose metastasis: Converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell 35 (1): 17–32.e16.

    Google Scholar 

  15. Gonzalez, D.M., and D. Medici. 2014. Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling 7 (344): re8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Moyret-Lalle, C., E. Ruiz, and A. Puisieux. 2014. Epithelial-mesenchymal transition transcription factors and miRNAs: “Plastic surgeons” of breast cancer. World Journal of Clinical Oncology 5 (3): 311–322.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cong, N., P. Du, A. Zhang, F. Shen, J. Su, P. Pu, T. Wang, J. Zjang, C. Kang, and Q. Zhang. 2013. Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncology Reports 29 (4): 1579–1587.

    Article  CAS  PubMed  Google Scholar 

  18. Guo, F., B.C. Parker Kerrigan, D. Yang, L. Hu, I. Shmulevich, A.K. Sood, F. Xue, and W. Zhang. 2014. Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. Journal of Hematology & Oncology 7: 19.

    Article  CAS  Google Scholar 

  19. Tian, Y., Q. Pan, Y. Shang, R. Zhu, J. Ye, Y. Liu, X. Zhong, S. Li, Y. He, L. Chen, J. Zhao, W. Chen, Z. Peng, and R. Wang. 2014. MicroRNA-200 (miR-200) cluster regulation by achaete scute-like 2 (Ascl2): impact on the epithelial-mesenchymal transition in colon cancer cells. The Journal of Biological Chemistry 289 (52): 36101–36115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. David, C.J., and J. Massague. 2018. Contextual determinants of TGFbeta action in development, immunity and cancer. Nature Reviews. Molecular Cell Biology 19 (7): 419–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morikawa, M., R. Derynck, and K. Miyazono. 2016. TGF-beta and the TGF-beta family: Context-dependent roles in cell and tissue physiology. Cold Spring Harbor Perspectives in Biology 8 (5): a021873.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moustakas, A., and C.H. Heldin. 2009. The regulation of TGFbeta signal transduction. Development 136 (22): 3699–3714.

    Article  CAS  PubMed  Google Scholar 

  23. Derynck, R., B.P. Muthusamy, and K.Y. Saeteurn. 2014. Signaling pathway cooperation in TGF-beta-induced epithelial-mesenchymal transition. Current Opinion in Cell Biology 31: 56–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyazawa, K., M. Shinozaki, T. Hara, T. Furuya, and K. Miyazono. 2002. Two major Smad pathways in TGF-beta superfamily signalling. Genes to Cells 7 (12): 1191–1204.

    Article  CAS  PubMed  Google Scholar 

  25. Massague, J. 2012. TGFbeta signalling in context. Nature Reviews. Molecular Cell Biology 13 (10): 616–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moustakas, A., and C.H. Heldin. 2005. Non-Smad TGF-beta signals. Journal of Cell Science 118 (Pt 16): 3573–3584.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, Y.E. 2017. Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harbor Perspectives in Biology 9 (2): a022129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Suzuki, H.I. 2018. MicroRNA control of TGF-beta signaling. International Journal of Molecular Sciences 19 (7): E1901.

    Article  PubMed  CAS  Google Scholar 

  29. Bierie, B., and H.L. Moses. 2006. Tumour microenvironment: TGFbeta: The molecular Jekyll and Hyde of cancer. Nature Reviews Cancer 6 (7): 506–520.

    Article  CAS  PubMed  Google Scholar 

  30. Heuberger, J., and W. Birchmeier. 2010. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harbor Perspectives in Biology 2 (2): a002915.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nusse, R. 2005. Wnt signaling in disease and in development. Cell Research 15 (1): 28–32.

    Article  CAS  PubMed  Google Scholar 

  32. Guo, Y., L. Xiao, L. Sun, and F. Liu. 2012. Wnt/beta-catenin signaling: A promising new target for fibrosis diseases. Physiological Research 61 (4): 337–346.

    CAS  PubMed  Google Scholar 

  33. Yoshida, G.J., and H. Saya. 2014. Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation. Biochemical and Biophysical Research Communications 443 (2): 622–627.

    Article  CAS  PubMed  Google Scholar 

  34. Clevers, H., and R. Nusse. 2012. Wnt/beta-catenin signaling and disease. Cell 149 (6): 1192–1205.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenbluh, J., X. Wang, and W.C. Hahn. 2014. Genomic insights into WNT/beta-catenin signaling. Trends in Pharmacological Sciences 35 (2): 103–109.

    Article  CAS  PubMed  Google Scholar 

  36. Tsukanov, A.S., N.I. Pospekhova, V.P. Shubin, A.M. Kuzminov, V.N. Kashnikov, S.A. Frolov, and Y.A. Shelygin. 2017. Mutations in the APC gene in Russian patients with classic form of familial adenomatous polyposis. Russian Journal of Genetics 53 (3): 369–375.

    Article  CAS  Google Scholar 

  37. Taylor, M.A., K. Sossey-Alaoui, C.L. Thompson, D. Danielpour, and W.P. Schiemann. 2013. TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. The Journal of Clinical Investigation 123 (1): 150–163.

    Article  CAS  PubMed  Google Scholar 

  38. Cai, J., H. Guan, L. Fang, Y. Yang, X. Zhu, J. Yuan, J. Wu, and M. Li. 2013. MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. The Journal of Clinical Investigation 123 (2): 566–579.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ghahhari, N.M., and S. Babashah. 2015. Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. European Journal of Cancer 51 (12): 1638–1649.

    Article  CAS  PubMed  Google Scholar 

  40. Fortini, M.E. 2009. Notch signaling: The core pathway and its posttranslational regulation. Developmental Cell 16 (5): 633–647.

    Article  CAS  PubMed  Google Scholar 

  41. Brabletz, S., K. Bajdak, S. Meidhof, U. Burk, G. Niedermann, E. Firat, U. Wellner, A. Dimmler, G. Faller, J. Schubert, and T. Brabletz. 2011. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. The EMBO Journal 30 (4): 770–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolos, V., J. Grego-Bessa, and J.L. de la Pompa. 2007. Notch signaling in development and cancer. Endocrine Reviews 28 (3): 339–363.

    Article  CAS  PubMed  Google Scholar 

  43. Reedijk, M., S. Odorcic, L. Chang, H. Zhang, N. Miller, D.R. McCready, G. Lockwood, and S.E. Egan. 2005. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Research 65 (18): 8530–8537.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, H., X. Wang, J. Xu, and Y. Sun. 2014. Notch1 activation is a poor prognostic factor in patients with gastric cancer. British Journal of Cancer 110 (9): 2283–2290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reedijk, M., S. Odorcic, H. Zhang, R. Chetty, C. Tennert, B.C. Dickson, G. Lockwood, S. Gallinger, and S.E. Egan. 2008. Activation of Notch signaling in human colon adenocarcinoma. International Journal of Oncology 33 (6): 1223–1229.

    PubMed  Google Scholar 

  46. Kanamori, M., T. Kawaguchi, J.M. Nigro, B.G. Feuerstein, M.S. Berger, L. Miele, and R.O. Pieper. 2007. Contribution of Notch signaling activation to human glioblastoma multiforme. Journal of Neurosurgery 106 (3): 417–427.

    Article  PubMed  Google Scholar 

  47. Joo, Y.H., C.K. Jung, M.S. Kim, and D.I. Sun. 2009. Relationship between vascular endothelial growth factor and Notch1 expression and lymphatic metastasis in tongue cancer. Otolaryngology and Head and Neck Surgery 140 (4): 512–518.

    Article  Google Scholar 

  48. Whelan, J.T., A. Kellogg, B.M. Shewchuk, K. Hewan-Lowe, and F.E. Bertrand. 2009. Notch-1 signaling is lost in prostate adenocarcinoma and promotes PTEN gene expression. Journal of Cellular Biochemistry 107 (5): 992–1001.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, M., L. Xue, Q. Cao, Y. Lin, Y. Ding, P. Yang, and L. Che. 2009. Expression of Notch1, Jagged1 and beta-catenin and their clinicopathological significance in hepatocellular carcinoma. Neoplasma 56 (6): 533–541.

    Article  CAS  PubMed  Google Scholar 

  50. Mullendore, M.E., J.B. Koorstra, Y.M. Li, G.J. Offerhaus, X. Fan, C.M. Henderson, W. Matsui, C.G. Eberhart, A. Maitra, and G. Feldmann. 2009. Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clinical Cancer Research 15 (7): 2291–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li, J., Q. Li, L. Lin, R. Wang, L. Chen, W. Du, C. Jiang, and R. Li. 2018. Targeting the Notch1 oncogene by miR-139-5p inhibits glioma metastasis and epithelial-mesenchymal transition (EMT). BMC Neurology 18 (1): 133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Zhang, Y., B. Xu, and X.P. Zhang. 2018. Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. OncoTargets and Therapy 11: 4263–4270.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Salaritabar, A., I. Berindan-Neagoe, B. Darvish, F. Hadjiakhoondi, A. Manayi, K.P. Devi, D. Barreca, I.E. Orhan, I. Suntar, A.A. Farooqi, D. Gulei, S.F. Nabavi, A. Sureda, M. Daglia, A.R. Dehpour, S.M. Nabavi, and S. Shirooie. 2019. Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacological Research 141: 466–480.

    Article  CAS  PubMed  Google Scholar 

  54. Katoh, Y., and M. Katoh. 2008. Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (review). International Journal of Molecular Medicine 22 (3): 271–275.

    CAS  PubMed  Google Scholar 

  55. Walter, K., N. Omura, S.M. Hong, M. Griffith, A. Vincent, M. Borges, and M. Goggins. 2010. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clinical Cancer Research 16 (6): 1781–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, J., and C.C. Hui. 2008. Hedgehog signaling in development and cancer. Developmental Cell 15 (6): 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, J., J. Hyun, S. Wang, C. Lee, and Y. Jung. 2018. MicroRNA-378 is involved in hedgehog-driven epithelial-to-mesenchymal transition in hepatocytes of regenerating liver. Cell Death & Disease 9 (7): 721.

    Article  CAS  Google Scholar 

  58. Yu, F., Y. Zheng, W. Hong, B. Chen, P. Dong, and J. Zheng. 2015. MicroRNA200a suppresses epithelialtomesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2. Molecular Medicine Reports 12 (6): 8121–8128.

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Y., L. Li, Z. Liu, Q. Yuan, and X. Lu. 2018. Downregulation of MiR-431 expression associated with lymph node metastasis and promotes cell invasion in papillary thyroid carcinoma. Cancer Biomarkers 22 (4): 727–732.

    Article  CAS  PubMed  Google Scholar 

  60. Santamaria, P.G., G. Moreno-Bueno, F. Portillo, and A. Cano. 2017. EMT: Present and future in clinical oncology. Molecular Oncology 11 (7): 718–738.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhang, J., X.J. Tian, and J. Xing. 2016. Signal transduction pathways of EMT induced by TGF-beta, SHH, and WNT and their crosstalks. Journal of Clinical Medicine 5 (4): E41.

    Article  PubMed  CAS  Google Scholar 

  62. Haque, S., and J.C. Morris. 2017. Transforming growth factor-beta: A therapeutic target for cancer. Human Vaccines & Immunotherapeutics 13 (8): 1741–1750.

    Article  Google Scholar 

  63. Hau, P., P. Jachimczak, R. Schlingensiepen, F. Schulmeyer, T. Jauch, A. Steinbrecher, A. Brawanski, M. Proescholdt, J. Schlaier, J. Buchroithner, J. Pichler, G. Wurm, M. Mehdorn, R. Strege, G. Schuierer, V. Villarrubia, F. Fellner, O. Jansen, T. Straube, V. Nohria, M. Goldbrunner, M. Kunst, S. Schmaus, G. Stauder, U. Bogdahn, and K.H. Schlingensiepen. 2007. Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: From preclinical to phase I/II studies. Oligonucleotides 17 (2): 201–212.

    Article  CAS  PubMed  Google Scholar 

  64. de Gramont, A., S. Faivre, and E. Raymond. 2017. Novel TGF-beta inhibitors ready for prime time in onco-immunology. Oncoimmunology 6 (1): e1257453.

    Article  PubMed  CAS  Google Scholar 

  65. Ehata, S., A. Hanyu, M. Fujime, Y. Katsuno, E. Fukunaga, K. Goto, Y. Ishikawa, K. Nomura, H. Yokoo, T. Shimizu, E. Ogata, K. Miyazono, K. Shimizu, and T. Imamura. 2007. Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Science 98 (1): 127–133.

    Article  CAS  PubMed  Google Scholar 

  66. Park, C.Y., J.Y. Son, C.H. Jin, J.S. Nam, D.K. Kim, and Y.Y. Sheen. 2011. EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. European Journal of Cancer 47 (17): 2642–2653.

    Article  CAS  PubMed  Google Scholar 

  67. Son, J.Y., S.Y. Park, S.J. Kim, S.J. Lee, S.A. Park, M.J. Kim, S.W. Kim, D.K. Kim, J.S. Nam, and Y.Y. Sheen. 2014. EW-7197, a novel ALK-5 kinase inhibitor, potently inhibits breast to lung metastasis. Molecular Cancer Therapeutics 13 (7): 1704–1716.

    Article  CAS  PubMed  Google Scholar 

  68. Park, C.Y., K.N. Min, J.Y. Son, S.Y. Park, J.S. Nam, D.K. Kim, and Y.Y. Sheen. 2014. An novel inhibitor of TGF-beta type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition. Cancer Letters 351 (1): 72–80.

    Article  CAS  PubMed  Google Scholar 

  69. Chakrabarti, R., V. Subramaniam, S. Abdalla, S. Jothy, and G.J. Prud’homme. 2009. Tranilast inhibits the growth and metastasis of mammary carcinoma. Anti-Cancer Drugs 20 (5): 334–345.

    Article  CAS  PubMed  Google Scholar 

  70. Liu, Y., C. Chen, P. Qian, X. Lu, B. Sun, X. Zhang, L. Wang, X. Gao, H. Li, Z. Chen, J. Tang, W. Zhang, J. Dong, R. Bai, P.E. Lobie, Q. Wu, S. Liu, H. Zhang, F. Zhao, M.S. Wicha, T. Zhu, and Y. Zhao. 2015. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications 6: 5988.

    Article  CAS  PubMed  Google Scholar 

  71. Da, C., Y. Liu, Y. Zhan, K. Liu, and R. Wang. 2016. Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-beta1/Smad3 signaling pathway. Oncology Reports 35 (5): 2767–2774.

    Article  CAS  PubMed  Google Scholar 

  72. Sun, Y., X. Jiang, Y. Lu, J. Zhu, L. Yu, B. Ma, and Q. Zhang. 2018. Oridonin prevents epithelial-mesenchymal transition and TGF-beta1-induced epithelial-mesenchymal transition by inhibiting TGF-beta1/Smad2/3 in osteosarcoma. Chemico-Biological Interactions 296: 57–64.

    Article  CAS  PubMed  Google Scholar 

  73. Ji, Q., X. Liu, Z. Han, L. Zhou, H. Sui, L. Yan, H. Jiang, J. Ren, J. Cai, and Q. Li. 2015. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-beta1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer 15: 97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Hafeez, B.B., A. Ganju, M. Sikander, V.K. Kashyap, Z.B. Hafeez, N. Chauhan, S. Malik, A.E. Massey, M.K. Tripathi, F.T. Halaweish, N. Zafar, M.M. Singh, M.M. Yallapu, S.C. Chauhan, and M. Jaggi. 2017. Ormeloxifene suppresses prostate tumor growth and metastatic phenotypes via inhibition of oncogenic beta-catenin signaling and EMT progression. Molecular Cancer Therapeutics 16 (10): 2267–2280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zhan, T., N. Rindtorff, and M. Boutros. 2017. Wnt signaling in cancer. Oncogene 36 (11): 1461–1473.

    Article  CAS  PubMed  Google Scholar 

  76. Wu, C.X., A. Xu, C.C. Zhang, P. Olson, L. Chen, T.K. Lee, T.T. Cheung, C.M. Lo, and X.Q. Wang. 2017. Notch inhibitor PF-03084014 inhibits hepatocellular carcinoma growth and metastasis via suppression of cancer stemness due to reduced activation of Notch1-Stat3. Molecular Cancer Therapeutics 16 (8): 1531–1543.

    Article  CAS  PubMed  Google Scholar 

  77. Venkatesh, V., R. Nataraj, G.S. Thangaraj, M. Karthikeyan, A. Gnanasekaran, S.B. Kaginelli, G. Kuppanna, C.G. Kallappa, and K.M. Basalingappa. 2018. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investigation 5: 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ahmad, A., M.Y. Maitah, K.R. Ginnebaugh, Y. Li, B. Bao, S.M. Gadgeel, and F.H. Sarkar. 2013. Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT-regulating miRNAs. Journal of Hematology & Oncology 6 (1): 77.

    Article  CAS  Google Scholar 

  79. Yang, X., and M.S. Dinehart. 2017. Triple hedgehog pathway inhibition for basal cell carcinoma. The Journal of Clinical and Aesthetic Dermatology 10 (4): 47–49.

    PubMed  PubMed Central  Google Scholar 

  80. Rumman, M., K.H. Jung, Z. Fang, H.H. Yan, M.K. Son, S.J. Kim, J. Kim, J.H. Park, J.H. Lim, S. Hong, and S.S. Hong. 2016. HS-173, a novel PI3K inhibitor suppresses EMT and metastasis in pancreatic cancer. Oncotarget 7 (47): 78029–78047.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim, W.G., C.J. Guigon, L. Fozzatti, J.W. Park, C. Lu, M.C. Willingham, and S.Y. Cheng. 2012. SKI-606, an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of thyroid cancer. Clinical Cancer Research 18 (5): 1281–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bartholomeusz, C., X. Xie, M.K. Pitner, K. Kondo, A. Dadbin, J. Lee, H. Saso, P.D. Smith, K.N. Dalby, and N.T. Ueno. 2015. MEK inhibitor selumetinib (AZD6244; ARRY-142886) prevents lung metastasis in a triple-negative breast cancer xenograft model. Molecular Cancer Therapeutics 14 (12): 2773–2781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huber, M.A., H.J. Maier, M. Alacakaptan, E. Wiedemann, J. Braunger, G. Boehmelt, J.B. Madwed, E.R. Young, D.R. Marshall, H. Pehamberger, T. Wirth, N. Kraut, and H. Beug. 2010. BI 5700, a selective chemical inhibitor of IkappaB kinase 2, specifically suppresses epithelial-mesenchymal transition and metastasis in mouse models of tumor progression. Genes & Cancer 1 (2): 101–114.

    Article  CAS  Google Scholar 

  84. Qin, G., F. Xu, T. Qin, Q. Zheng, D. Shi, W. Xia, Y. Tian, Y. Tang, J. Wang, X. Xiao, W. Deng, and S. Wang. 2015. Palbociclib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway. Oncotarget 6 (39): 41794–41808.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Parvani, J.G., M.D. Gujrati, M.A. Mack, W.P. Schiemann, and Z.R. Lu. 2015. Silencing beta3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Research 75 (11): 2316–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Padthaisong, S., M. Thanee, A. Techasen, N. Namwat, P. Yongvanit, A. Liwatthakun, K. Hankla, S. Sangkhamanon, and W. Loilome. 2017. Nimotuzumab inhibits cholangiocarcinoma cell metastasis via suppression of the epithelial-mesenchymal transition process. Anticancer Research 37 (7): 3591–3597.

    CAS  PubMed  Google Scholar 

  87. Ferrari-Amorotti, G., C. Chiodoni, F. Shen, S. Cattelani, A.R. Soliera, G. Manzotti, G. Grisendi, M. Dominici, F. Rivasi, M.P. Colombo, A. Fatatis, and B. Calabretta. 2014. Suppression of invasion and metastasis of triple-negative breast cancer lines by pharmacological or genetic inhibition of slug activity. Neoplasia 16 (12): 1047–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rhodes, L.V., C.R. Tate, H.C. Segar, H.E. Burks, T.B. Phamduy, V. Hoang, S. Elliott, D. Gilliam, F.N. Pounder, M. Anbalagan, D.B. Chrisey, B.G. Rowan, M.E. Burow, and B.M. Collins-Burow. 2014. Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Research and Treatment 145 (3): 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chatterjee, S., and P.C. Sil. 2019. Targeting the crosstalks of Wnt pathway with Hedgehog and Notch for cancer therapy. Pharmacological Research 142: 251–261.

    Article  CAS  PubMed  Google Scholar 

  90. Chen, L., W. Mai, M. Chen, J. Hu, Z. Zhuo, X. Lei, L. Deng, J. Liu, N. Yao, M. Huang, Y. Peng, W. Ye, and D. Zhang. 2017. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating beta-catenin. Pharmacological Research 123: 130–142.

    Article  CAS  PubMed  Google Scholar 

  91. Way, T.D., J.T. Huang, C.H. Chou, C.H. Huang, M.H. Yang, and C.T. Ho. 2014. Emodin represses TWIST1-induced epithelial-mesenchymal transitions in head and neck squamous cell carcinoma cells by inhibiting the beta-catenin and Akt pathways. European Journal of Cancer 50 (2): 366–378.

    Article  CAS  PubMed  Google Scholar 

  92. Ma, J.W., C.M. Hung, Y.C. Lin, C.T. Ho, J.Y. Kao, and T.D. Way. 2016. Aloe-emodin inhibits HER-2 expression through the downregulation of Y-box binding protein-1 in HER-2-overexpressing human breast cancer cells. Oncotarget 7 (37): 58915–58930.

    PubMed  PubMed Central  Google Scholar 

  93. Song, X., X. Zhou, Y. Qin, J. Yang, Y. Wang, Z. Sun, K. Yu, S. Zhang, and S. Liu. 2018. Emodin inhibits epithelialmesenchymal transition and metastasis of triple negative breast cancer via antagonism of CCchemokine ligand 5 secreted from adipocytes. International Journal of Molecular Medicine 42 (1): 579–588.

    CAS  PubMed  Google Scholar 

  94. Li, N., C. Wang, P. Zhang, and S. You. 2018. Emodin inhibits pancreatic cancer EMT and invasion by upregulating microRNA1271. Molecular Medicine Reports 18 (3): 3366–3374.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tian, L., D. Shen, X. Li, X. Shan, X. Wang, Q. Yan, and J. Liu. 2016. Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 7 (2): 1619–1632.

    Article  PubMed  Google Scholar 

  96. Liu, T., L. Zhao, Y. Zhang, W. Chen, D. Liu, H. Hou, L. Ding, and X. Li. 2014. Ginsenoside 20(S)-Rg3 targets HIF-1alpha to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS One 9 (9): e103887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Li, J., X. Gong, R. Jiang, D. Lin, T. Zhou, A. Zhang, H. Li, X. Zhang, J. Wan, G. Kuang, and H. Li. 2018. Fisetin inhibited growth and metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via PTEN/Akt/GSK3beta signal pathway. Frontiers in Pharmacology 9: 772.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wang, H., W. Zhong, J. Zhao, H. Zhang, Q. Zhang, Y. Liang, S. Chen, H. Liu, S. Zong, Y. Tian, H. Zhou, T. Sun, Y. Liu, and C. Yang. 2019. Oleanolic acid inhibits epithelial-mesenchymal transition of hepatocellular carcinoma by promoting iNOS dimerization. Molecular Cancer Therapeutics 18 (1): 62–74.

    Article  CAS  PubMed  Google Scholar 

  99. Li, C.Y., Q. Wang, S. Shen, X.L. Wei, and G.X. Li. 2018. Oridonin inhibits migration, invasion, adhesion and TGF-beta1-induced epithelial-mesenchymal transition of melanoma cells by inhibiting the activity of PI3K/Akt/GSK-3beta signaling pathway. Oncology Letters 15 (1): 1362–1372.

    PubMed  Google Scholar 

  100. Liu, Q.Q., K. Chen, Q. Ye, X.H. Jiang, and Y.W. Sun. 2016. Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/beta-catenin signaling pathway. Cancer Cell International 16: 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kim, R.K., Y. Suh, K.C. Yoo, Y.H. Cui, E. Hwang, H.J. Kim, J.S. Kang, M.J. Kim, Y.Y. Lee, and S.J. Lee. 2015. Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition. Cancer Science 106 (1): 94–101.

    Article  CAS  PubMed  Google Scholar 

  102. Chang, J.H., S.L. Lai, W.S. Chen, W.Y. Hung, J.M. Chow, M. Hsiao, W.J. Lee, and M.H. Chien. 2017. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways. Biochimica et Biophysica Acta, Molecular Cell Research 1864 (10): 1746–1758.

    Article  CAS  PubMed  Google Scholar 

  103. Chen, M.C., W.W. Chang, Y.D. Kuan, S.T. Lin, H.C. Hsu, and C.H. Lee. 2012. Resveratrol inhibits LPS-induced epithelial-mesenchymal transition in mouse melanoma model. Innate Immunity 18 (5): 685–693.

    Article  PubMed  CAS  Google Scholar 

  104. Lee, J., E.R. Hahm, A.I. Marcus, and S.V. Singh. 2015. Withaferin A inhibits experimental epithelial-mesenchymal transition in MCF-10A cells and suppresses vimentin protein level in vivo in breast tumors. Molecular Carcinogenesis 54 (6): 417–429.

    Article  CAS  PubMed  Google Scholar 

  105. Kyakulaga, A.H., F. Aqil, R. Munagala, and R.C. Gupta. 2018. Withaferin A inhibits epithelial to mesenchymal transition in non-small cell lung cancer cells. Scientific Reports 8 (1): 15737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Thaiparambil, J.T., L. Bender, T. Ganesh, E. Kline, P. Patel, Y. Liu, M. Tighiouart, P.M. Vertino, R.D. Harvey, A. Garcia, and A.I. Marcus. 2011. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. International Journal of Cancer 129 (11): 2744–2755.

    Article  CAS  PubMed  Google Scholar 

  107. Yang, Z., A. Garcia, S. Xu, D.R. Powell, P.M. Vertino, S. Singh, and A.I. Marcus. 2013. Withania somnifera root extract inhibits mammary cancer metastasis and epithelial to mesenchymal transition. PLoS One 8 (9): e75069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kaufhold, S., and B. Bonavida. 2014. Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. Journal of Experimental & Clinical Cancer Research 33: 62.

    Article  CAS  Google Scholar 

  109. Harney, A.S., T.J. Meade, and C. LaBonne. 2012. Targeted inactivation of Snail family EMT regulatory factors by a Co(III)-Ebox conjugate. PLoS One 7 (2): e32318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vistain, L.F., N. Yamamoto, R. Rathore, P. Cha, and T.J. Meade. 2015. Targeted inhibition of Snail activity in breast cancer cells by using a Co(III) -Ebox conjugate. Chembiochem 16 (14): 2065–2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Finetti, F., A. Moglia, I. Schiavo, S. Donnini, G.N. Berta, F. Di Scipio, A. Perrelli, C. Fornelli, L. Trabalzini, and S.F. Retta. 2018. Yeast-derived recombinant avenanthramides inhibit proliferation, migration and epithelial mesenchymal transition of colon cancer cells. Nutrients 10 (9): E1159.

    Article  PubMed  CAS  Google Scholar 

  112. Wang, Y.P., M.Z. Wang, Y.R. Luo, Y. Shen, and Z.X. Wei. 2012. Lentivirus-mediated shRNA interference targeting SLUG inhibits lung cancer growth and metastasis. Asian Pacific Journal of Cancer Prevention 13 (10): 4947–4951.

    Article  PubMed  Google Scholar 

  113. Qian, J., H. Liu, W. Chen, K. Wen, W. Lu, C. Huang, and Z. Fu. 2013. Knockdown of Slug by RNAi inhibits the proliferation and invasion of HCT116 colorectal cancer cells. Molecular Medicine Reports 8 (4): 1055–1059.

    Article  CAS  PubMed  Google Scholar 

  114. Lai, W.Y., W.Y. Wang, Y.C. Chang, C.J. Chang, P.C. Yang, and K. Peck. 2014. Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras. Biomaterials 35 (9): 2905–2914.

    Article  CAS  PubMed  Google Scholar 

  115. Khan, M.A., H.C. Chen, D. Zhang, and J. Fu. 2013. Twist: A molecular target in cancer therapeutics. Tumour Biology 34 (5): 2497–2506.

    Article  CAS  PubMed  Google Scholar 

  116. Mikheeva, S.A., A.M. Mikheev, A. Petit, R. Beyer, R.G. Oxford, L. Khorasani, J.P. Maxwell, C.A. Glackin, H. Wakimoto, I. Gonzalez-Herrero, I. Sanchez-Garcia, J.R. Silber, P.J. Horner, and R.C. Rostomily. 2010. TWIST1 promotes invasion through mesenchymal change in human glioblastoma. Molecular Cancer 9: 194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Mikheev, A.M., S.A. Mikheeva, L.J. Severs, C.C. Funk, L. Huang, J.L. McFaline-Figueroa, J. Schwensen, C. Trapnell, N.D. Price, S. Wong, and R.C. Rostomily. 2018. Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma. Molecular Oncology 12 (7): 1188–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Xu, Y., D.K. Lee, Z. Feng, Y. Xu, W. Bu, Y. Li, L. Liao, and J. Xu. 2017. Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America 114 (43): 11494–11499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, R., C. Wu, H. Liang, Y. Zhao, C. Lin, X. Zhang, and C. Ye. 2018. Knockdown of TWIST enhances the cytotoxicity of chemotherapeutic drugs in doxorubicin-resistant HepG2 cells by suppressing MDR1 and EMT. International Journal of Oncology 53 (4): 1763–1773.

    CAS  PubMed  Google Scholar 

  120. Yochum, Z.A., J. Cades, L. Mazzacurati, N.M. Neumann, S.K. Khetarpal, S. Chatterjee, H. Wang, M.A. Attar, E.H. Huang, S.N. Chatley, K. Nugent, A. Somasundaram, J.A. Engh, A.J. Ewald, Y.J. Cho, C.M. Rudin, P.T. Tran, and T.F. Burns. 2017. A first-in-class TWIST1 inhibitor with activity in oncogene-driven lung cancer. Molecular Cancer Research 15 (12): 1764–1776.

    Article  CAS  PubMed  Google Scholar 

  121. Yochum, Z.A., J. Cades, H. Wang, S. Chatterjee, B.W. Simons, J.P. O’Brien, S.K. Khetarpal, G. Lemtiri-Chlieh, K.V. Myers, E.H. Huang, C.M. Rudin, P.T. Tran, and T.F. Burns. 2019. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer. Oncogene 38 (5): 656–670.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, Y., L. Xu, A.Q. Li, and X.Z. Han. 2019. The roles of ZEB1 in tumorigenic progression and epigenetic modifications. Biomedicine & Pharmacotherapy 110: 400–408.

    Article  CAS  Google Scholar 

  123. Fardi, M., M. Alivand, B. Baradaran, M. Farshdousti Hagh, and S. Solali. 2019. The crucial role of ZEB2: from development to epithelial-to-mesenchymal transition and cancer complexity. Journal of Cellular Physiology 234: 14783–14799.

    Google Scholar 

  124. Zhang, W., X. Shi, Y. Peng, M. Wu, P. Zhang, R. Xie, Y. Wu, Q. Yan, S. Liu, and J. Wang. 2015. HIF-1alpha promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One 10 (6): e0129603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Sakata, J., F. Utsumi, S. Suzuki, K. Niimi, E. Yamamoto, K. Shibata, T. Senga, F. Kikkawa, and H. Kajiyama. 2017. Inhibition of ZEB1 leads to inversion of metastatic characteristics and restoration of paclitaxel sensitivity of chronic chemoresistant ovarian carcinoma cells. Oncotarget 8 (59): 99482–99494.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Meidhof, S., S. Brabletz, W. Lehmann, B.T. Preca, K. Mock, M. Ruh, J. Schuler, M. Berthold, A. Weber, U. Burk, M. Lubbert, M. Puhr, Z. Culig, U. Wellner, T. Keck, P. Bronsert, S. Kusters, U.T. Hopt, M.P. Stemmler, and T. Brabletz. 2015. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Molecular Medicine 7 (6): 831–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ming, H., Q. Chuang, W. Jiashi, L. Bin, W. Guangbin, and J. Xianglu. 2018. Naringin targets Zeb1 to suppress osteosarcoma cell proliferation and metastasis. Aging (Albany NY) 10 (12): 4141–4151.

    Article  CAS  Google Scholar 

  128. Cech, T.R., and J.A. Steitz. 2014. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157 (1): 77–94.

    Article  CAS  PubMed  Google Scholar 

  129. Xu, Q., F. Deng, Y. Qin, Z. Zhao, Z. Wu, Z. Xing, A. Ji, and Q.J. Wang. 2016. Long non-coding RNA regulation of epithelial-mesenchymal transition in cancer metastasis. Cell Death & Disease 7 (6): e2254.

    Article  CAS  Google Scholar 

  130. Exposito-Villen, A., E.A. Aránega, and D. Franco. 2018. Functional role of non-coding RNAs during epithelial-to-mesenchymal transition. Noncoding RNA 4 (2): E14.

    PubMed  Google Scholar 

  131. Shi, S.J., L.J. Wang, B. Yu, Y.H. Li, Y. Jin, and X.Z. Bai. 2015. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 6 (13): 11652–11663.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Huang, J.F., Y.J. Guo, C.X. Zhao, S.X. Yuan, Y. Wang, G.N. Tang, W.P. Zhou, and S.H. Sun. 2013. Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology 57 (5): 1882–1892.

    Article  CAS  PubMed  Google Scholar 

  133. Xu, Z.Y., Q.M. Yu, Y.A. Du, L.T. Yang, R.Z. Dong, L. Huang, P.F. Yu, and X.D. Cheng. 2013. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. International Journal of Biological Sciences 9 (6): 587–597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Zhou, M., Y. Hou, G. Yang, H. Zhang, G. Tu, Y.E. Du, S. Wen, L. Xu, X. Tang, S. Tang, L. Yang, X. Cui, and M. Liu. 2016. LncRNA-Hh strengthen cancer stem cells generation in Twist-positive breast cancer via activation of Hedgehog signaling pathway. Stem Cells 34 (1): 55–66.

    Article  CAS  PubMed  Google Scholar 

  135. Liang, W.C., W.M. Fu, C.W. Wong, Y. Wang, W.M. Wang, G.X. Hu, L. Zhang, L.J. Xiao, D.C. Wan, J.F. Zhang, and M.M. Waye. 2015. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer. Oncotarget 6 (26): 22513–22525.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, T.H., Y.S. Lin, Y. Chen, C.T. Yeh, Y.L. Huang, T.H. Hsieh, T.M. Shieh, C. Hsueh, and T.C. Chen. 2015. Long non-coding RNA AOC4P suppresses hepatocellular carcinoma metastasis by enhancing vimentin degradation and inhibiting epithelial-mesenchymal transition. Oncotarget 6 (27): 23342–23357.

    PubMed  PubMed Central  Google Scholar 

  137. Tang, Y., Y. Tang, and Y.S. Cheng. 2017. miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial-mesenchymal transition and the Notch signaling pathway. Scientific Reports 7: 38232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Huang, G., M.Y. Du, H. Zhu, N. Zhang, Z.W. Lu, L.X. Qian, W. Zhang, X. Tian, X. He, and L. Yin. 2018. MiRNA-34a reversed TGF-beta-induced epithelial-mesenchymal transition via suppression of SMAD4 in NPC cells. Biomedicine & Pharmacotherapy 106: 217–224.

    Article  CAS  Google Scholar 

  139. Peng, L., Z. Liu, J. Xiao, Y. Tu, Z. Wan, H. Xiong, Y. Li, and W. Xiao. 2017. MicroRNA-148a suppresses epithelial-mesenchymal transition and invasion of pancreatic cancer cells by targeting Wnt10b and inhibiting the Wnt/beta-catenin signaling pathway. Oncology Reports 38 (1): 301–308.

    Article  CAS  PubMed  Google Scholar 

  140. Shelygin, Y.A., V.P. Shubin, S.A. Frolov, S.I. Achkasov, O.I. Sushkov, A.S. Tsukanov, V.N. Kashnikov, and N.I. Pospekhova. 2015. The analysis of microRNAs miR-200C and miR-145 expression in colorectal cancer of different molecular subtypes. Doklady. Biochemistry and Biophysics 463: 243–246.

    Article  CAS  PubMed  Google Scholar 

  141. Yin, K., W. Yin, Y. Wang, L. Zhou, Y. Liu, G. Yang, J. Wang, and J. Lu. 2016. MiR-206 suppresses epithelial mesenchymal transition by targeting TGF-beta signaling in estrogen receptor positive breast cancer cells. Oncotarget 7 (17): 24537–24548.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dong, P., Y. Xiong, H. Watari, S.J. Hanley, Y. Konno, K. Ihira, T. Yamada, M. Kudo, J. Yue, and N. Sakuragi. 2016. MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphere-forming ability of ovarian cancer cells. Journal of Experimental & Clinical Cancer Research 35 (1): 132.

    Article  CAS  Google Scholar 

  143. Wang, X., M. Yu, K. Zhao, M. He, W. Ge, Y. Sun, and Y. Wang. 2016. Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2. Cell Death & Disease 7 (12): e2517.

    Article  CAS  Google Scholar 

  144. Ji, H., M. Sang, F. Liu, N. Ai, and C. Geng. 2019. miR-124 regulates EMT based on ZEB2 target to inhibit invasion and metastasis in triple-negative breast cancer. Pathology, Research and Practice 215 (4): 697–704.

    Article  CAS  PubMed  Google Scholar 

  145. Harazono, Y., T. Muramatsu, H. Endo, N. Uzawa, T. Kawano, K. Harada, J. Inazawa, and K. Kozaki. 2013. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One 8 (5): e62757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ying, L., Q. Chen, Y. Wang, Z. Zhou, Y. Huang, and F. Qiu. 2012. Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Molecular BioSystems 8 (9): 2289–2294.

    Article  CAS  PubMed  Google Scholar 

  147. Shen, L., L. Chen, Y. Wang, X. Jiang, H. Xia, and Z. Zhuang. 2015. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. Journal of Neuro-Oncology 121 (1): 101–108.

    Article  CAS  PubMed  Google Scholar 

  148. Gutschner, T., M. Hammerle, M. Eissmann, J. Hsu, Y. Kim, G. Hung, A. Revenko, G. Arun, M. Stentrup, M. Gross, M. Zornig, A.R. MacLeod, D.L. Spector, and S. Diederichs. 2013. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research 73 (3): 1180–1189.

    Article  CAS  PubMed  Google Scholar 

  149. Kong, Q., and M. Qiu. 2018. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochemical and Biophysical Research Communications 495 (2): 1594–1600.

    Article  CAS  PubMed  Google Scholar 

  150. Jiang, H., T. Li, Y. Qu, X. Wang, B. Li, J. Song, X. Sun, Y. Tang, J. Wan, Y. Yu, J. Zhan, and H. Zhang. 2018. Long non-coding RNA SNHG15 interacts with and stabilizes transcription factor Slug and promotes colon cancer progression. Cancer Letters 425: 78–87.

    Article  CAS  PubMed  Google Scholar 

  151. Liu, H., Z. Lv, and E. Guo. 2015. Knockdown of long noncoding RNA SPRY4-IT1 suppresses glioma cell proliferation, metastasis and epithelial-mesenchymal transition. International Journal of Clinical and Experimental Pathology 8 (8): 9140–9146.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Li, R.H., M. Chen, J. Liu, C.C. Shao, C.P. Guo, X.L. Wei, Y.C. Li, W.H. Huang, and G.J. Zhang. 2018. Long noncoding RNA ATB promotes the epithelial-mesenchymal transition by upregulating the miR-200c/Twist1 axe and predicts poor prognosis in breast cancer. Cell Death & Disease 9 (12): 1171.

    Article  CAS  Google Scholar 

  153. Zhang, Y., J. Li, S. Jia, Y. Wang, Y. Kang, and W. Zhang. 2018. Down-regulation of lncRNA-ATB inhibits epithelial-mesenchymal transition of breast cancer cells by increasing miR-141-3p expression. Biochemistry and Cell Biology 97 (2): 193–200.

    Article  PubMed  CAS  Google Scholar 

  154. El Bezawy, R., D. Cominetti, N. Fenderico, V. Zuco, G.L. Beretta, M. Dugo, N. Arrighetti, C. Stucchi, T. Rancati, R. Valdagni, N. Zaffaroni, and P. Gandellini. 2017. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer Letters 395: 53–62.

    Article  PubMed  CAS  Google Scholar 

  155. Zhang, T., X. Cai, Q. Li, P. Xue, Z. Chen, X. Dong, and Y. Xue. 2016. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC). Oncotarget 7 (27): 42225–42240.

    PubMed  PubMed Central  Google Scholar 

  156. Hu, C., S. Cui, J. Zheng, T. Yin, J. Lv, J. Long, W. Zhang, X. Wang, S. Sheng, H. Zhang, Y. Sun, H. Wang, and C. Li. 2018. MiR-875-5p inhibits hepatocellular carcinoma cell proliferation and migration by repressing astrocyte elevated gene-1 (AEG-1) expression. Translational Cancer Research 7 (1): 158–169.

    Article  CAS  Google Scholar 

  157. Li, Y., Y. Liang, Y. Sang, X. Song, H. Zhang, Y. Liu, L. Jiang, and Q. Yang. 2018. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death & Disease 9 (1): 14.

    Article  CAS  Google Scholar 

  158. Qiu, H., F. Chen, and M. Chen. 2019. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metastasis. Biology Open 8: bio042937.

    Google Scholar 

  159. Kong, X., J. Zhang, J. Li, J. Shao, and L. Fang. 2018. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochemical and Biophysical Research Communications 501 (2): 486–493.

    Article  CAS  PubMed  Google Scholar 

  160. Shu, S., X. Liu, M. Xu, X. Gao, J. Fan, H. Liu, and R. Li. 2018. MicroRNA-424 regulates epithelial-mesenchymal transition of endometrial carcinoma by directly targeting insulin-like growth factor 1 receptor. Journal of Cellular Biochemistry 120: 2171‐2179.

    Google Scholar 

  161. Slaby, O., R. Laga, and O. Sedlacek. 2017. Therapeutic targeting of non-coding RNAs in cancer. The Biochemical Journal 474 (24): 4219–4251.

    Article  CAS  PubMed  Google Scholar 

  162. Zaravinos, A. 2015. The regulatory role of microRNAs in EMT and cancer. Journal of Oncology 2015: 865816.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Chen, C.Y., C.C. Chen, T.M. Shieh, C. Hsueh, S.H. Wang, Y.L. Leu, J.H. Lian, and T.H. Wang. 2018. Corylin suppresses hepatocellular carcinoma progression via the inhibition of epithelial-mesenchymal transition, mediated by long noncoding RNA GAS5. International Journal of Molecular Sciences 19 (2): E380.

    Article  PubMed  CAS  Google Scholar 

  164. Jing, W., H. Dong, M. Min, Z. Runpeng, X. Xuewei, C. Ru, X. Yingru, N. Shengfa, T. Baoxian, Y. Jinbo, H. Weidong, and Z. Rongbo. 2019. Dependence of artesunate on long noncoding RNA-RP11 to inhibit epithelial-mesenchymal transition of hepatocellular carcinoma. Journal of Cellular Biochemistry 120 (4): 6026–6034.

    Article  CAS  PubMed  Google Scholar 

  165. Xu, K., W. Tao, and Z. Su. 2018. Propofol prevents IL-13-induced epithelial-mesenchymal transition in human colorectal cancer cells. Cell Biology International 42 (8): 985–993.

    Article  CAS  PubMed  Google Scholar 

  166. Liu, W.Z., and N. Liu. 2018. Propofol inhibits lung cancer A549 cell growth and epithelial-mesenchymal transition process by upregulation of microRNA-1284. Oncology Research 27 (1): 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Liu, Z., J. Zhang, G. Hong, J. Quan, L. Zhang, and M. Yu. 2016. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. American Journal of Translational Research 8 (10): 4120–4133.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Hu, Y., J. Zhou, F. Ye, H. Xiong, L. Peng, Z. Zheng, F. Xu, M. Cui, C. Wei, X. Wang, Z. Wang, H. Zhu, P. Lee, M. Zhou, B. Jiang, and D.Y. Zhang. 2015. BRD4 inhibitor inhibits colorectal cancer growth and metastasis. International Journal of Molecular Sciences 16 (1): 1928–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Shimada, Y., and J.D. Minna. 2017. Exosome mediated phenotypic changes in lung cancer pathophysiology. Translational Cancer Research 6 (Suppl 6): S1040–s1042.

    Article  PubMed  Google Scholar 

  170. Lobb, R.J., R. van Amerongen, A. Wiegmans, S. Ham, J.E. Larsen, and A. Moller. 2017. Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. International Journal of Cancer 141 (3): 614–620.

    Article  CAS  PubMed  Google Scholar 

  171. Hu, T.H., Y. Yao, S. Yu, L.L. Han, W.J. Wang, H. Guo, T. Tian, Z.P. Ruan, X.M. Kang, J. Wang, S.H. Wang, and K.J. Nan. 2014. SDF-1/CXCR4 promotes epithelial-mesenchymal transition and progression of colorectal cancer by activation of the Wnt/beta-catenin signaling pathway. Cancer Letters 354 (2): 417–426.

    Article  CAS  PubMed  Google Scholar 

  172. Li, X., Q. Ma, Q. Xu, H. Liu, J. Lei, W. Duan, K. Bhat, F. Wang, E. Wu, and Z. Wang. 2012. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway. Cancer Letters 322 (2): 169–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, X., W. Zhang, Y. Ding, X. Guo, Y. Yuan, and D. Li. 2017. CRISPR/Cas9-mediated genome engineering of CXCR4 decreases the malignancy of hepatocellular carcinoma cells in vitro and in vivo. Oncology Reports 37 (6): 3565–3571.

    Article  CAS  PubMed  Google Scholar 

  174. Bargagna-Mohan, P., A. Hamza, Y.E. Kim, Y. Khuan Abby Ho, N. Mor-Vaknin, N. Wendschlag, J. Liu, R.M. Evans, D.M. Markovitz, C.G. Zhan, K.B. Kim, and R. Mohan. 2007. The tumor inhibitor and antiangiogenic agent withaferin A targets the intermediate filament protein vimentin. Chemistry & Biology 14 (6): 623–634.

    Article  CAS  Google Scholar 

  175. Lu, T., B. Wu, Y. Yu, W. Zhu, S. Zhang, Y. Zhang, J. Guo, and N. Deng. 2018. Blockade of ONECUT2 expression in ovarian cancer inhibited tumor cell proliferation, migration, invasion and angiogenesis. Cancer Science 109 (7): 2221–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yu, C., Z. Liu, Q. Chen, Y. Li, L. Jiang, Z. Zhang, and F. Zhou. 2018. Nkx2.8 inhibits epithelial-mesenchymal transition in bladder urothelial carcinoma via transcriptional repression of Twist1. Cancer Research 78 (5): 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, H., K. Cai, J. Wang, X. Wang, K. Cheng, F. Shi, L. Jiang, Y. Zhang, and J. Dou. 2014. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells 32 (11): 2858–2868.

    Article  CAS  PubMed  Google Scholar 

  178. Ward, A., A. Balwierz, J.D. Zhang, M. Kublbeck, Y. Pawitan, T. Hielscher, S. Wiemann, and O. Sahin. 2013. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene 32 (9): 1173–1182.

    Article  CAS  PubMed  Google Scholar 

  179. Cattan, N., N. Rochet, C. Mazeau, E. Zanghellini, B. Mari, C. Chauzy, H. Stora de Novion, J. Amiel, J.L. Lagrange, B. Rossi, and J. Gioanni. 2001. Establishment of two new human bladder carcinoma cell lines, CAL 29 and CAL 185. Comparative study of cell scattering and epithelial to mesenchyme transition induced by growth factors. British Journal of Cancer 85 (9): 1412–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhao, R., L. Gong, L. Li, L. Guo, D. Zhu, Z. Wu, and Q. Zhou. 2013. nm23-H1 is a negative regulator of TGF-beta1-dependent induction of epithelial-mesenchymal transition. Experimental Cell Research 319 (5): 740–749.

    Article  CAS  PubMed  Google Scholar 

  181. Larue, L., and A. Bellacosa. 2005. Epithelial-mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24 (50): 7443–7454.

    Article  CAS  PubMed  Google Scholar 

  182. Malfettone, A., J. Soukupova, E. Bertran, E. Crosas-Molist, R. Lastra, J. Fernando, P. Koudelkova, B. Rani, A. Fabra, T. Serrano, E. Ramos, W. Mikulits, G. Giannelli, and I. Fabregat. 2017. Transforming growth factor-beta-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma. Cancer Letters 392: 39–50.

    Article  CAS  PubMed  Google Scholar 

  183. Huang, R.Y., K.T. Kuay, T.Z. Tan, M. Asad, H.M. Tang, A.H. Ng, J. Ye, V.Y. Chung, and J.P. Thiery. 2015. Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget 6 (26): 22098–22113.

    PubMed  PubMed Central  Google Scholar 

  184. Das, S., B.N. Becker, F.M. Hoffmann, and J.E. Mertz. 2009. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biology 10: 94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Dinicola, S., G. Fabrizi, M.G. Masiello, S. Proietti, A. Palombo, M. Minini, A.H. Harrath, S.H. Alwasel, G. Ricci, A. Catizone, A. Cucina, and M. Bizzarri. 2016. Inositol induces mesenchymal-epithelial reversion in breast cancer cells through cytoskeleton rearrangement. Experimental Cell Research 345 (1): 37–50.

    Article  CAS  PubMed  Google Scholar 

  186. Maschler, S., C.A. Gebeshuber, E.M. Wiedemann, M. Alacakaptan, M. Schreiber, I. Custic, and H. Beug. 2010. Annexin A1 attenuates EMT and metastatic potential in breast cancer. EMBO Molecular Medicine 2 (10): 401–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yi, Y., S. Zeng, Z. Wang, M. Wu, Y. Ma, X. Ye, B. Zhang, and H. Liu. 2018. Cancer-associated fibroblasts promote epithelial-mesenchymal transition and EGFR-TKI resistance of non-small cell lung cancers via HGF/IGF-1/ANXA2 signaling. Biochimica et Biophysica Acta - Molecular Basis of Disease 1864 (3): 793–803.

    Article  CAS  PubMed  Google Scholar 

  188. Grosse-Wilde, A., A. Fouquier d’Herouel, E. McIntosh, G. Ertaylan, A. Skupin, R.E. Kuestner, A. del Sol, K.A. Walters, and S. Huang. 2015. Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One 10 (5): e0126522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. El-Badawy, A., N.I. Ghoneim, M.A. Nasr, H. Elkhenany, T.A. Ahmed, S.M. Ahmed, and N. El-Badri. 2018. Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells. Biology Open 7 (7): bio034181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Kzhyshkowska, J., M. Bizzarri, R. Apte, and N. Cherdyntseva. 2017. Editorial: Targeting of cancer cells and tumor microenvironment: Perspectives for personalized therapy. Current Pharmaceutical Design 23 (32): 4703–4704.

    Article  CAS  PubMed  Google Scholar 

  191. Stakheyeva, M., V. Riabov, I. Mitrofanova, N. Litviakov, E. Choynzonov, N. Cherdyntseva, and J. Kzhyshkowska. 2017. Role of the immune component of tumor microenvironment in the efficiency of cancer treatment: Perspectives for the personalized therapy. Current Pharmaceutical Design 23 (32): 4807–4826.

    Article  CAS  PubMed  Google Scholar 

  192. Sielska, M., P. Przanowski, B. Wylot, K. Gabrusiewicz, M. Maleszewska, M. Kijewska, M. Zawadzka, J. Kucharska, K. Vinnakota, H. Kettenmann, K. Kotulska, W. Grajkowska, and B. Kaminska. 2013. Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. The Journal of Pathology 230 (3): 310–321.

    Article  CAS  PubMed  Google Scholar 

  193. Liu, Z., W. Kuang, Q. Zhou, and Y. Zhang. 2018. TGF-beta1 secreted by M2 phenotype macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signalling pathway. International Journal of Molecular Medicine 42 (6): 3395–3403.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Litviakov, N., M. Tsyganov, I. Larionova, M. Ibragimova, I. Deryusheva, P. Kazantseva, E. Slonimskaya, I. Frolova, E. Choinzonov, N. Cherdyntseva, and J. Kzhyshkowska. 2018. Expression of M2 macrophage markers YKL-39 and CCL18 in breast cancer is associated with the effect of neoadjuvant chemotherapy. Cancer Chemotherapy and Pharmacology 82 (1): 99–109.

    Article  CAS  PubMed  Google Scholar 

  195. Mitrofanova, I., M. Zavyalova, V. Riabov, N. Cherdyntseva, and J. Kzhyshkowska. 2018. The effect of neoadjuvant chemotherapy on the correlation of tumor-associated macrophages with CD31 and LYVE-1. Immunobiology 223 (6–7): 449–459.

    Article  CAS  PubMed  Google Scholar 

  196. Buldakov, M., M. Zavyalova, N. Krakhmal, N. Telegina, S. Vtorushin, I. Mitrofanova, V. Riabov, S. Yin, B. Song, N. Cherdyntseva, and J. Kzhyshkowska. 2017. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology 222 (1): 31–38.

    Article  CAS  PubMed  Google Scholar 

  197. Mantovani, A., and D.L. Longo. 2018. Macrophage checkpoint blockade in cancer – back to the future. The New England Journal of Medicine 379 (18): 1777–1779.

    Article  PubMed  Google Scholar 

  198. Mantovani, A., A. Ponzetta, A. Inforzato, and S. Jaillon. 2019. Innate immunity, inflammation and tumour progression: Double-edged swords. Journal of Internal Medicine 285: 524–532.

    Google Scholar 

  199. Hamilton, T.A., C. Zhao, P.G. Pavicic Jr., and S. Datta. 2014. Myeloid colony-stimulating factors as regulators of macrophage polarization. Frontiers in Immunology 5: 554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Liu, T., I. Larionova, N. Litviakov, V. Riabov, M. Zavyalova, M. Tsyganov, M. Buldakov, B. Song, K. Moganti, P. Kazantseva, E. Slonimskaya, E. Kremmer, A. Flatley, H. Kluter, N. Cherdyntseva, and J. Kzhyshkowska. 2018. Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncoimmunology 7 (6): e1436922.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Perelmuter, V.M., L.A. Tashireva, V.N. Manskikh, E.V. Denisov, O.E. Savelieva, E.V. Kaygorodova, and M.V. Zavyalova. 2018. Heterogeneity and plasticity of immune inflammatory responses in the tumor microenvironment: Their role in the antitumor effect and tumor aggressiveness. Biology Bulletin Reviews 8 (5): 431–448.

    Article  Google Scholar 

  202. Zhang, K., C.A. Corsa, S.M. Ponik, J.L. Prior, D. Piwnica-Worms, K.W. Eliceiri, P.J. Keely, and G.D. Longmore. 2013. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nature Cell Biology 15 (6): 677–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Park, J., and J.E. Schwarzbauer. 2014. Mammary epithelial cell interactions with fibronectin stimulate epithelial-mesenchymal transition. Oncogene 33 (13): 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  204. Takai, K., A. Le, V.M. Weaver, and Z. Werb. 2016. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget 7 (50): 82889–82901.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Su, Y.W., T.X. Xie, D. Sano, and J.N. Myers. 2011. IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2. PLoS One 6 (4): e19412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sullivan, N.J., A.K. Sasser, A.E. Axel, F. Vesuna, V. Raman, N. Ramirez, T.M. Oberyszyn, and B.M. Hall. 2009. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28 (33): 2940–2947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Lin, Y., C. Wei, Y. Liu, Y. Qiu, C. Liu, and F. Guo. 2013. Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis. Cancer Science 104 (9): 1217–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, C., L. Gao, Y. Cai, H. Liu, D. Gao, J. Lai, B. Jia, F. Wang, and Z. Liu. 2016. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials 84: 1–12.

    Article  CAS  PubMed  Google Scholar 

  209. Kim, Y.B., Y.H. Ahn, J.H. Jung, Y.J. Lee, J.H. Lee, and J.L. Kang. 2019. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cellular and Molecular Immunology 16: 851–867.

    Google Scholar 

  210. Theodoraki, M.N., S.S. Yerneni, C. Brunner, J. Theodorakis, T.K. Hoffmann, and T.L. Whiteside. 2018. Plasma-derived exosomes reverse epithelial-to-mesenchymal transition after photodynamic therapy of patients with head and neck cancer. Oncoscience 5 (3–4): 75–87.

    PubMed  PubMed Central  Google Scholar 

  211. Hughes, R., B.Z. Qian, C. Rowan, M. Muthana, I. Keklikoglou, O.C. Olson, S. Tazzyman, S. Danson, C. Addison, M. Clemons, A.M. Gonzalez-Angulo, J.A. Joyce, M. De Palma, J.W. Pollard, and C.E. Lewis. 2015. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Research 75 (17): 3479–3491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Chen, L., J. Li, F. Wang, C. Dai, F. Wu, X. Liu, T. Li, R. Glauben, Y. Zhang, G. Nie, Y. He, and Z. Qin. 2016. Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherapy. Cancer Research 76 (23): 6828–6838.

    Article  CAS  PubMed  Google Scholar 

  213. Stafford, J.H., T. Hirai, L. Deng, S.B. Chernikova, K. Urata, B.L. West, and J.M. Brown. 2016. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro-Oncology 18 (6): 797–806.

    Article  CAS  PubMed  Google Scholar 

  214. Escamilla, J., S. Schokrpur, C. Liu, S.J. Priceman, D. Moughon, Z. Jiang, F. Pouliot, C. Magyar, J.L. Sung, J. Xu, G. Deng, B.L. West, G. Bollag, Y. Fradet, L. Lacombe, M.E. Jung, J. Huang, and L. Wu. 2015. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Research 75 (6): 950–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhu, Y., B.L. Knolhoff, M.A. Meyer, T.M. Nywening, B.L. West, J. Luo, A. Wang-Gillam, S.P. Goedegebuure, D.C. Linehan, and D.G. DeNardo. 2014. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Research 74 (18): 5057–5069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Brown, J.M., L. Recht, and S. Strober. 2017. The promise of targeting macrophages in cancer therapy. Clinical Cancer Research 23 (13): 3241–3250.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Gort, E.H., A.J. Groot, E. van der Wall, P.J. van Diest, and M.A. Vooijs. 2008. Hypoxic regulation of metastasis via hypoxia-inducible factors. Current Molecular Medicine 8 (1): 60–67.

    Article  CAS  PubMed  Google Scholar 

  218. Imai, T., A. Horiuchi, C. Wang, K. Oka, S. Ohira, T. Nikaido, and I. Konishi. 2003. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. The American Journal of Pathology 163 (4): 1437–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yang, M.H., M.Z. Wu, S.H. Chiou, P.M. Chen, S.Y. Chang, C.J. Liu, S.C. Teng, and K.J. Wu. 2008. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology 10 (3): 295–305.

    Article  CAS  PubMed  Google Scholar 

  220. Mak, P., I. Leav, B. Pursell, D. Bae, X. Yang, C.A. Taglienti, L.M. Gouvin, V.M. Sharma, and A.M. Mercurio. 2010. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: Implications for Gleason grading. Cancer Cell 17 (4): 319–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Kim, H.J., J.W. Park, Y.S. Cho, C.H. Cho, J.S. Kim, H.W. Shin, D.H. Chung, S.J. Kim, and Y.S. Chun. 2013. Pathogenic role of HIF-1alpha in prostate hyperplasia in the presence of chronic inflammation. Biochimica et Biophysica Acta 1832 (1): 183–194.

    Article  CAS  PubMed  Google Scholar 

  222. Cannito, S., E. Novo, A. Compagnone, L. Valfre di Bonzo, C. Busletta, E. Zamara, C. Paternostro, D. Povero, A. Bandino, F. Bozzo, C. Cravanzola, V. Bravoco, S. Colombatto, and M. Parola. 2008. Redox mechanisms switch on hypoxia-dependent epithelial-mesenchymal transition in cancer cells. Carcinogenesis 29 (12): 2267–2278.

    Article  CAS  PubMed  Google Scholar 

  223. Jiao, M., and K.J. Nan. 2012. Activation of PI3 kinase/Akt/HIF-1alpha pathway contributes to hypoxia-induced epithelial-mesenchymal transition and chemoresistance in hepatocellular carcinoma. International Journal of Oncology 40 (2): 461–468.

    CAS  PubMed  Google Scholar 

  224. Baran, N., and M. Konopleva. 2017. Molecular pathways: Hypoxia-activated prodrugs in cancer therapy. Clinical Cancer Research 23 (10): 2382–2390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Redfern, A.D., L.J. Spalding, and E.W. Thompson. 2018. The Kraken Wakes: Induced EMT as a driver of tumour aggression and poor outcome. Clinical & Experimental Metastasis 35 (4): 285–308.

    Article  Google Scholar 

  226. Jolly, M.K., K.E. Ware, S. Gilja, J.A. Somarelli, and H. Levine. 2017. EMT and MET: Necessary or permissive for metastasis? Molecular Oncology 11 (7): 755–769.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Jolly, M.K., J.A. Somarelli, M. Sheth, A. Biddle, S.C. Tripathi, A.J. Armstrong, S.M. Hanash, S.A. Bapat, A. Rangarajan, and H. Levine. 2019. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacology & Therapeutics 194: 161–184.

    Article  CAS  Google Scholar 

  228. Lee, J.M., S. Dedhar, R. Kalluri, and E.W. Thompson. 2006. The epithelial-mesenchymal transition: New insights in signaling, development, and disease. The Journal of Cell Biology 172 (7): 973–981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kroger, C., A. Afeyan, J. Mraz, E.N. Eaton, F. Reinhardt, Y.L. Khodor, P. Thiru, B. Bierie, X. Ye, C.B. Burge, and R.A. Weinberg. 2019. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America 116 (15): 7353–7362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Jolly, M.K., S.A. Mani, and H. Levine. 2018. Hybrid epithelial/mesenchymal phenotype(s): The ‘fittest’ for metastasis? Biochimica Et Biophysica Acta. Reviews on Cancer 1870 (2): 151–157.

    Article  CAS  PubMed  Google Scholar 

  231. Aceto, N., A. Bardia, D.T. Miyamoto, M.C. Donaldson, B.S. Wittner, J.A. Spencer, M. Yu, A. Pely, A. Engstrom, H. Zhu, B.W. Brannigan, R. Kapur, S.L. Stott, T. Shioda, S. Ramaswamy, D.T. Ting, C.P. Lin, M. Toner, D.A. Haber, and S. Maheswaran. 2014. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158 (5): 1110–1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Mani, S.A., W. Guo, M.J. Liao, E.N. Eaton, A. Ayyanan, A.Y. Zhou, M. Brooks, F. Reinhard, C.C. Zhang, M. Shipitsin, L.L. Campbell, K. Polyak, C. Brisken, J. Yang, and R.A. Weinberg. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133 (4): 704–715.

    Article  CAS  PubMed  Google Scholar 

  233. Celia-Terrassa, T., O. Meca-Cortes, F. Mateo, A. Martinez de Paz, N. Rubio, A. Arnal-Estape, B.J. Ell, R. Bermudo, A. Diaz, M. Guerra-Rebollo, J.J. Lozano, C. Estaras, C. Ulloa, D. Alvarez-Simon, J. Mila, R. Vilella, R. Paciucci, M. Martinez-Balbas, A.G. de Herreros, R.R. Gomis, Y. Kang, J. Blanco, P.L. Fernandez, and T.M. Thomson. 2012. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation 122 (5): 1849–1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Liu, S., Y. Cong, D. Wang, Y. Sun, L. Deng, Y. Liu, R. Martin-Trevino, L. Shang, S.P. McDermott, M.D. Landis, S. Hong, A. Adams, R. D’Angelo, C. Ginestier, E. Charafe-Jauffret, S.G. Clouthier, D. Birnbaum, S.T. Wong, M. Zhan, J.C. Chang, and M.S. Wicha. 2014. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports 2 (1): 78–91.

    Article  CAS  PubMed  Google Scholar 

  235. Jolly, M.K., B. Huang, M. Lu, S.A. Mani, H. Levine, and E. Ben-Jacob. 2014. Towards elucidating the connection between epithelial-mesenchymal transitions and stemness. Journal of the Royal Society Interface 11 (101): 20140962.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  236. Goldman, A., B. Majumder, A. Dhawan, S. Ravi, D. Goldman, M. Kohandel, P.K. Majumder, and S. Sengupta. 2015. Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nature Communications 6: 6139.

    Article  CAS  PubMed  Google Scholar 

  237. Tsai, J.H., J.L. Donaher, D.A. Murphy, S. Chau, and J. Yang. 2012. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22 (6): 725–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Watanabe, K., A. Villarreal-Ponce, P. Sun, M.L. Salmans, M. Fallahi, B. Andersen, and X. Dai. 2014. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Developmental Cell 29 (1): 59–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Boareto, M., M.K. Jolly, A. Goldman, M. Pietila, S.A. Mani, S. Sengupta, E. Ben-Jacob, H. Levine, and J.N. Onuchic. 2016. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 13 (118): 20151106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Cheung, K.J., V. Padmanaban, V. Silvestri, K. Schipper, J.D. Cohen, A.N. Fairchild, M.A. Gorin, J.E. Verdone, K.J. Pienta, J.S. Bader, and A.J. Ewald. 2016. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proceedings of the National Academy of Sciences of the United States of America 113 (7): E854–E863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bocci, F., L. Gearhart-Serna, M. Boareto, M. Ribeiro, E. Ben-Jacob, G.R. Devi, H. Levine, J.N. Onuchic, and M.K. Jolly. 2019. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America 116 (1): 148–157.

    Article  CAS  PubMed  Google Scholar 

  242. Grassian, A.R., F. Lin, R. Barrett, Y. Liu, W. Jiang, M. Korpal, H. Astley, D. Gitterman, T. Henley, R. Howes, J. Levell, J.M. Korn, and R. Pagliarini. 2012. Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT). The Journal of Biological Chemistry 287 (50): 42180–42194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Waitkus, M.S., B.H. Diplas, and H. Yan. 2018. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell 34 (2): 186–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by the Russian Science Foundation (grant #19-75-30016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny V. Denisov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Denisov, E.V., Jolly, M.K., Shubin, V.P., Tsukanov, A.S., Cherdyntseva, N.V. (2020). Critical Steps in Epithelial-Mesenchymal Transition as Target for Cancer Treatment. In: Bizzarri, M. (eds) Approaching Complex Diseases. Human Perspectives in Health Sciences and Technology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-32857-3_10

Download citation

Publish with us

Policies and ethics