Skip to main content

Corrosion Modeling

  • Chapter
  • First Online:
Corrosion Processes

Part of the book series: Structural Integrity ((STIN,volume 13))

Abstract

This chapter introduces fundamental concepts, methods and techniques for modeling of corrosion processes. Modeling and simulation platforms constitute the cornerstone for corrosion prevention, remediation and diagnosis/prognosis of corrosion initiation and propagation in critical metal structures. We address methods that cover first principle models, semi-empirical and empirical models for corrosion processes. We begin with the electrochemical nature of corrosion as the basis for microscale modeling efforts and proceed to describe mesoscale and macroscale modeling techniques. The absence of real long-time corrosion data derived from field testing, laboratory experiments and high-confidence models (mostly absent in the current literature) necessitates the development and application of mostly empirical approaches. The modeling approaches reported in the literature are reviewed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallace W, Hoeppner DW (1985) AGARD corrosion handbook volume I aircraft corrosion: causes and case histories. AGARD-AG-278, vol 1

    Google Scholar 

  2. Wei RP, Liao CM, Gao M (1998) A transmission electron microscopy study of 7075-T6 and 2024-T3 aluminum alloys. Metall Mater Trans A 29A:1153–1163

    Article  CAS  Google Scholar 

  3. Hoeppner DW, Chandrasekaran V, Taylor AMH (1999) Review of pitting corrosion fatigue models. In: International committee on aeronautical fatigue, Bellevue, WA, USA

    Google Scholar 

  4. Huang T-S, Frankel GS (2006) Influence of grain structure on anisotropic localized corrosion kinetics of AA7xxx-T6 alloys. Corros Eng Sci Technol 41(3):192–199

    Article  CAS  Google Scholar 

  5. McAdam G, Newman PJ, McKenzie I, Davis C, Hinton BR (2005) Fiber optic sensors for detection of corrosion within aircraft. Struct Health Monit 4:47–56

    Article  Google Scholar 

  6. Pidaparti RM (2007) Strucural corrosion health assessment using computational intelligence methods. Struct Health Monit 6(3):245–259

    Article  Google Scholar 

  7. Rao KS, Rao KP (2004) Pitting corrosion of heat-treatable aluminum alloys and welds: a review. Trans Indian Inst Met 57(6):593–610

    CAS  Google Scholar 

  8. Frankel GS (1998) Pitting corrosion of metals: a review of the critical factors. J Electrochem Soc 145(6):2186–2198

    Article  CAS  Google Scholar 

  9. Szklarska-Smialowska Z (1999) Pitting corrosion of aluminum. Cossorion Sci 41(9):1743–1767

    CAS  Google Scholar 

  10. Pereira MC, Silva JW, Acciari HA, Codaro EN, Hein LR (2012) Morphology characterization and kinetics evaluation of pitting corrosion of commercially pure aluminum by digital image analysis. Mater Sci Appl 3(5):287–293

    CAS  Google Scholar 

  11. Forsyth DS, Komorwoski JP (2000) The role of data fusion in NDE for aging aircraft. SPIE Aging Aircr Airpt Aerospe Hardw IV 3994:6

    Google Scholar 

  12. Brown D, Darr D, Morse J, Laskowski B (2012) Real-time corrosion monitoring of aircraft structures with prognostic applications. In: Annual conference of the prognostics and health management society, vol 3

    Google Scholar 

  13. Brown DW, Connolly RJ, Laskowski B, Garvan M, Li H, Agarwala VS, Vachtsevanos G (2014) A novel linear polarization resistance corrosion sensing methodology for aircraft structure. In: Annual conference of the prognostics and health management society, vol 5, no 33

    Google Scholar 

  14. Kawai S, Kasai K (1985) Considerations of allowable stress of corrosion fatigue (focused on the influence of pitting). Fatigue Fract Eng Mater Struct 8(2):115–127

    Article  Google Scholar 

  15. Belanger P, Cawley P, Simonetti F (2010) Guided wave diffraction tomography within the born approximation. IEEE Trans UFFC 57:1405–1418

    Article  Google Scholar 

  16. Provan JW, Rodriguez ES (1989) Part I: Development of a markov description of pitting corrosion. Corrosion 45(3):178–192

    Article  CAS  Google Scholar 

  17. Bolzoni F, Fassina P, Fumagalli G, Lazzari L, Mazzola E (2006) Application of probabilistic models to localised corrosion study. Metallurgia Ital 98(6):9–15

    Google Scholar 

  18. Timashev SA, Malyukova MG, Poluian LV, Bushiskaya AV (2008) Markov description of corrosion defects growth and its application to reliability based inspection and maintenance of pipelines. In proceedings of the 7th ASME International Pipeline Conference (IPC ’08), Calgary, Canada, Sep 2008

    Google Scholar 

  19. López De La Cruz J, Lindelauf RHA, Koene L, Gutiérrez MA (2007) Stochastic approach to the spatial analysis of pitting corrosion and pit interaction. Electrochem Commun 9(2):325–330

    Article  Google Scholar 

  20. Harlow DG, Wei RP (1994) Probability approach for prediction of corrosion and corrosion fatigue life. AIAA J 32(10)

    Article  CAS  Google Scholar 

  21. Hoeppner DW, Goss GL (1971) A new apparatus for studying fretting fatigue. Rev Sci Instrum 42:817

    Article  CAS  Google Scholar 

  22. Lindley TC, Mcintyre P, Trant PJ (1982) Fatigue-crack initiation at corrosion pits. Metals Technol 9(1):135–142

    Article  Google Scholar 

  23. Kondo Y (1989) Prediction of fatigue crack initiation life based on pit growth. Corrosion 45(1):7–11

    Article  CAS  Google Scholar 

  24. Li H, Garvan M, Li J, Echauz J, Brown D, Vachtsevanos G, Zahiri F (2017) An integrated architecture for corrosion monitoring and testing, data mining, modeling, and diagnostics/prognostics. Intl J Progn Health Manage 8(5):12

    Google Scholar 

  25. Kotzalas MN, Harris TA (2001) Fatigue failure progression in ball bearings. J Tribol 123:238–242

    Article  CAS  Google Scholar 

  26. Zhang C, Kurfess T, Danyluk S, Liang S (1999) Dynamic modeling of vibration signals for bearing condition monitoring. The 2nd international workshop on structural health monitoring, Stanford, pp 926–935

    Google Scholar 

  27. Choi Y, Liu C (2006) Rolling contact fatigue life of finish hard machined surfaces Part I. Model develop Wear 261:485–491

    CAS  Google Scholar 

  28. Davies M, Chou Y, Evans C (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. Ann CIRP 45(1):77–82

    Article  Google Scholar 

  29. Ioannides E, Harris T (1985) A new fatigue life model for rolling bearing. Trans ASME J Tribol 107:367–278

    Google Scholar 

  30. Qiu J, Zhang C, Seth B, Liang S (2002) Damage mechanics approach for bearing lifetime prognostics. Mech Syst Signal Process 16(5):817–829

    Article  Google Scholar 

  31. He D, Bechhoefer E (2008) Bearing prognostics using HUMS condition indictors. American Helicopter Society 64th Annual Forum, Montreal, Canada

    Google Scholar 

  32. United States Nuclear Regulatory Commission (2009) Standard review plan for spent fuel dry storage systems at a General License Facility

    Google Scholar 

  33. NRC SFST ISG-11 (2003) Revision 3, Division of Spent Fuel Storage and Transportation Interim Staff Guidance—1, Revision 2, Classifying the condition of spent nuclear fuel for interim storage and transportation based on function

    Google Scholar 

  34. United States Nuclear Waste TECHNICAL REVIEW BOARD (2010) Evaluation of the technical basis for extended dry storage and transportation of used nuclear fuel

    Google Scholar 

  35. Grossbeck ML (Faculty Advisor), ICaMS (Internal Cask Monitoring System) (2008) A conceptual report on the development of the information from the interior of a spent fuel cask, undergraduate entry, American Nuclear Society Student Design Competition, Nuclear Engineering Department, The University of Tennessee Knoxville

    Google Scholar 

  36. Grossbeck ML (Faculty Advisor) (2008) Device to transmit critical information from the interior of a spent fuel cask, undergraduate entry. American Nuclear Society Student Design Competition, Nuclear Engineering Department, The University of Tennessee Knoxville

    Google Scholar 

  37. NAC-MPC final safety analysis report, Docket number 72-1025

    Google Scholar 

  38. NAC-UMS final safety analysis report, Docket number 72-1015

    Google Scholar 

  39. MAGNASTOR final safety analysis report, Docket number 72-1031

    Google Scholar 

  40. Liu YY (2012) Monitoring, INMM spent fuel seminar, Washington, DC, Jan 31–Feb 2, 2012

    Google Scholar 

  41. Bakhtiari S, Wang K, Elmer TW, Koehl E, Raptis AC (2013) Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems. AIP Conf Proc 1511:1526

    Article  CAS  Google Scholar 

  42. Carstens TA, Corradini ML, Blanchard JP, Ma Z (2012) Thermoelectric powered wireless sensors for spent fuel monitoring. IEEE Trans Nucl Sci 59(4)

    Article  Google Scholar 

  43. A. S. G102 (2004) Standard practice for calculation of corrosion rates and related information from electrochemical measurements. ASTM International, West Conshohocken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Vachtsevanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vachtsevanos, G. (2020). Corrosion Modeling. In: Vachtsevanos, G., Natarajan, K., Rajamani, R., Sandborn, P. (eds) Corrosion Processes. Structural Integrity, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-32831-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32831-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32830-6

  • Online ISBN: 978-3-030-32831-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics