Skip to main content

Alternative Testing Protocol to Assess the Bonding and Shear Resistance of Pavement Bituminous Crack-Sealant Material

  • Conference paper
  • First Online:
Proceedings of AICCE'19 (AICCE 2019)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 53))

Included in the following conference series:

Abstract

Conventional asphalt binder is widely used as the crack sealing material. Crack sealing is one of the most frequent pavement maintenance methods. The level of performance during service life has a close relationship with the properties of asphalt binder used in the pavement or as crack sealant material. As for the pavement crack mechanism, there are two different working mechanisms that occur within the pavement crack, which is horizontal and vertical movement. Horizontal movements are caused by shrinkage and expansion of pavement due to the thermal changes in pavement material. While, the moisture related changes causes vertical movement. This study aims to introduce an alternative testing protocol that can simulate the real failure mechanism of pavement crack. This is due to limited approaches that had been taken by previous researchers to evaluate the performance of pavement-crack sealant. The tensile strength and resistance to shear stress had been chosen as the main performance evaluations in pavement crack sealant material. Prior to that, the bond test and Layer Parallel Direct Shear Test had been used to evaluate the tensile strength and shear resistance of crack sealant material, respectively. This testing protocols could be adopted by other researchers for further studies and also by the asphalt industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayazi MJ, Moniri A, Barghabany P (2017) Moisture susceptibility of warm mixed-reclaimed asphalt pavement containing sasobit and zycotherm additives. Pet Sci Technol 35:890–895

    Article  Google Scholar 

  2. California Department of Transportation (2008) Maintenance technical advisory guide (Mtag), vol I, 2nd edn. Flexible Pavement Preservation

    Google Scholar 

  3. Çelik ON, Atiş CD (2008) Compactibility of hot bituminous mixtures made with crumb rubber-modified binders. Constr Build Mater 22:1143–1147

    Article  Google Scholar 

  4. Cong L, Peng J, Guo Z, Wang Q (2017) Evaluation of fatigue cracking in asphalt mixtures based on surface energy. J Mater Civ Eng 29:D4015003

    Article  Google Scholar 

  5. Federal Highway Administration (2008) Pavement preservation treatment construction guide

    Google Scholar 

  6. Harmelink D, Aschenbrener T (2003) Extent of top-down cracking in Colorado

    Google Scholar 

  7. Kök BV, Çolak H (2011) Laboratory comparison of the crumb-rubber and SBS modified bitumen and hot mix asphalt. Constr Build Mater 25:3204–3212

    Article  Google Scholar 

  8. Lee S-J, Akisetty CK, Amirkhanian SN (2008) The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Constr Build Mater 22:1368–1376

    Article  Google Scholar 

  9. Liu S, Cao W, Fang J, Shang S (2009) Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt. Constr Build Mater 23:2701–2708

    Article  Google Scholar 

  10. Malaysian Public Work Department (2008) Standard specifications for road work. JKR/SPJ/2008-Section 4:Flexible Pavement. Kuala Lumpur, Malaysia

    Google Scholar 

  11. Navarro FJ, Partal P, Martı́nez-Boza F, Valencia C, Gallegos C (2002) Rheological characteristics of ground tire rubber-modified bitumens. Chem Eng J 89:53–61

    Article  Google Scholar 

  12. Norouzi A, Kim D, Richard Kim Y (2016) Numerical evaluation of pavement design parameters for the fatigue cracking and rutting performance of asphalt pavements. Mater Struct 49:3619–3634

    Article  Google Scholar 

  13. Sani A, Mohd Hasan MR, Shariff KA, Jamshidi A, Ibrahim AH, Poovaneshvaran S (2019) Engineering and microscopic characteristics of natural rubber latex modified binders incorporating silane additive. Int J Pavement Eng, 1–10

    Google Scholar 

  14. Smith KL, Romine AR (2001) Materials and procedures for sealing and filling cracks in asphalt-surfaced pavements—manual of practice. Eres Consultants Incorporated, Federal Highway Administration

    Google Scholar 

  15. Swamy AK, Daniel JS, Harvey J, Popescu L, Wu R (2016) Effect of mixture properties on fatigue failure mechanism in asphalt concrete

    Google Scholar 

  16. Tremblay J, Sanborn D (2014) Assessment of ASTM D 6690-12 type II and type IV joint sealers. Vermont Agency of Transportation, Federal Highway Administration

    Google Scholar 

  17. Wu S, Wen H, Zhang W, Shen S, Mohammad LN, Faheem A, Muhunthan B (2019) Field performance of top-down fatigue cracking for warm mix asphalt pavements. Int J Pavement Eng 20:33–43

    Article  Google Scholar 

  18. Zhang J, Simate GS, Lee SI, Hu S, Walubita LF (2016) Relating asphalt binder elastic recovery properties to HMA crack modeling and fatigue life prediction. Constr Build Mater 111:644–651

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to thank Universiti Sains Malaysia (USM) Division of Research & Innovation for the Short-Term Research Grant Scheme (304/PAWAM/60313048) to conduct this study. Acknowledgements are also due to all material suppliers for their kind cooperation that enable this study to be conducted. Many thanks are also due to the technicians of the Highway Engineering Laboratory at Universiti Sains Malaysia for their continuous assistance. Any opinions, findings, and conclusions expressed in this manuscript are those of the authors and do not necessarily reflect the views of USM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Rosli Mohd Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poovaneshvaran, S., Mohd Hasan, M.R., Sani, A., Shuib, R.K. (2020). Alternative Testing Protocol to Assess the Bonding and Shear Resistance of Pavement Bituminous Crack-Sealant Material. In: Mohamed Nazri, F. (eds) Proceedings of AICCE'19. AICCE 2019. Lecture Notes in Civil Engineering, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-32816-0_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32816-0_90

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32815-3

  • Online ISBN: 978-3-030-32816-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics