Skip to main content

Tractor Mechanics

  • Chapter
  • First Online:
Fundamentals of Tractor Design

Abstracts

Off-road tractor speeds. Off-road working speeds have been increased from about 3 km/h (for horses) [2.1] to often between about 4 and 12 km/h for tractors; in the case of a very even surface for special operations (such as forage cutting) up to 15–20 km/h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References – Translation of titles in ()

  1. Havard, M., and A. Wanders: Power Sources – Animals. In: CIGR Handbook of Agricultural Engineering, Vol. III, 22–41. St Joseph MI: ASAE 1999.

    Google Scholar 

  2. Cerovic, V, Z. Mileusnic, and D.V. Petrovic: Theoretical limits of the angular stability range of the tractor moving over inclined terrain. 43. Symposium “Actual Tasks on Agricultural Engineering” Feb. 24–27. 2015 Opatija. Proceedings 111–121.

    Google Scholar 

  3. Ipek, I.: Über die Kräfte und Momente an einem Luftreifen und ihrem Einfluss auf das Verhalten luftbereifter Fahrzeuge am Hang (Mechanics of air inflated tires and their influence on vehicles on slopes). Ph.D. thesis TH Braunschweig 1959.

    Google Scholar 

  4. Ogorkiewicz, R.M.: Off-the-road vehicles. Recognizing M.G. Bekker who received an Honorary Doctor Degree from Technical University Munich in 1963. J. of Terramechanics 1 (1964) No. 1, 118–123.

    Google Scholar 

  5. Bekker, M.G.: Theory of Land Locomotion. Ann Arbor, MI: University of Michigan Press. 1956.

    Google Scholar 

  6. Bekker, M.G.: Off-the-Road Locomotion. Ann Arbor, MI: University of Michigan Press. 1960.

    Google Scholar 

  7. Coulomb, C.A.: Essai sur une application des règles de maximis et de minimis à quelques problèmes de statique relatifs àl'architecture. Mémoires des Savants Etrangers à l’Academie de Paris, Vol.VII, Paris, 1776.

    Google Scholar 

  8. Osman, M.S.: The measurment of soil shear strength. J. of Terramech. 1 (1964) No. 3, 54–60.

    Google Scholar 

  9. Taylor, J.H., and G.E. Vanden Berg: The role of displacement in a simple traction system. J. of Terramech. 3 (1966) No. 1, 47–62.

    Google Scholar 

  10. Bernacki, H., and. J. Haman: Grundlagen der Bodenbearbeitung und Pflugbau. (Fundamentals of soil tillage and plow design). Berlin: VEB Verlag Technik 1972.

    Google Scholar 

  11. Wong, J.Y., and J. Preston-Thomas: On the characterization of the shear stress – displacement relationship of terrain. J. of Terramech. 19 (1983) No. 4, 225–234.

    Google Scholar 

  12. Söhne, W.: Die Kraftübertragung zwischen Schlepperreifen und Ackerboden. (Traction of tractor tires on agricultural soils). Grundl. Landtechnik 2 (1952) No. 3, 75–87.

    Google Scholar 

  13. Schüring, D.: Zur Theorie des Geländerads. (Theory of off-road wheel mechanics). Forschung im Ingenieurwesen, Part I: Vol. 34 (1968) No. 6, 165–176, Part II: Vol. 35 (1969) No. 1, 7–12.

    Google Scholar 

  14. Söhne, W.: Final lectures on terramechanics (German) at TU Munich 1986. See also J. of Terramechanics 13 (1976) No. 1, 27–43.

    Google Scholar 

  15. Kutzbach, H.D., A. Bürger and S. Böttinger: Rolling radii and moment arm of the wheel load for pneumatic tyres. J. of Terramechanics 82 (2019) 13–21.

    Google Scholar 

  16. Schreiber, M., and H.D. Kutzbach: Comparison of different zero-slip definitions and a proposal to standardize tire traction performance. J. of Terramechanics 44 (2007) No. 1, 75–79.

    Google Scholar 

  17. Brixius, W.W., and R.D. Wismer: The role of slip in traction. ASAE Paper 78-1538. St Joseph MI: ASAE 1978.

    Google Scholar 

  18. Krick, G.: Behaviour of tyres driven in soft ground with side slip. J. of Terramechanics 9 (1973) No. 4, 9–30. Translated from ATZ.

    Google Scholar 

  19. Kutzbach, H.D., and K. Armbruster: Triebund Seitenkräfte an schräglaufenden angetriebenen Ackerschlepperrädern (longitudinal and transversal forces of traction tires). Conf. “Landtechnik” 1991, Proc. 106–108.

    Google Scholar 

  20. Watanabe, K., et al.: Turning characteristics of multi-axle vehicles. J. of Terramechanics 44 (2007) No. 1, 81–87.

    Google Scholar 

  21. Söhne, W.: Four-wheel drive or rear-wheel drive for high power farm tractors. J. of Terramechanics 5 (1968) No. 3, 9–28.

    Google Scholar 

  22. Zoz, F. M., and R. D. Grisso: Traction and Tractor Perfomance. ASAE Lecture No. 27. St. Joseph MI: ASAE 2003.

    Google Scholar 

  23. McKibben, G., and J. B. Davidson: Transport Wheels for Agricultural Machines, Part IV. Agric. Eng. 21 (1940) No. 2, 57–58.

    Google Scholar 

  24. Steiner, M.: Berechnung der Tragfähigkeit von Ackerschlepperreifen sowie des Kontaktflächenmitteldruckes und des Rollwiderstandes auf starrer Fahrbahn. (Load capacity, average contact pressure and rolling resistance of tractor tires on concrete). Grundl. Landtechnik 29 (1979) No. 5, 145–152.

    Google Scholar 

  25. Steinkampf, H.: Betriebseigenschaften von Ackerschlepperreifen bei unterschiedlichen Einsatzbedingungen. (Off-road mechanics of tractor tires under different conditions). Landbauforsch. Völkenrode, Vol. 80 (1986).

    Google Scholar 

  26. Taheri, S., at al.: A technical survey on terramechanics models for tire-terrain interaction used in modeling and simulation of wheeled vehicles. Review. J. of Terramechanics 57 (2015), 1–22.

    Google Scholar 

  27. Janosi, Z., and B. Hanamoto: The analytical determination of drawbar pulls as a function of slip for tracked vehicles in deformable soils. 1st International Conf. of ISTVS, Turin, June 12–16, 1961. Turin: Edizioni Minerva Tecnica 1961, 707–726 (Discussions see 727–736).

    Google Scholar 

  28. Dwyer, M.J.: Prediction of drawbar test performance. J. of Terramechanics 24 (1987) No. 2, 169–177.

    Google Scholar 

  29. Wismer, R.D., and H.J. Luth: Off-road traction prediction for wheeled vehicles. ASAE paper No. 72-619. St. Joseph MI: ASAE 1972.

    Google Scholar 

  30. Brixius, W.W.: Traction prediction equations for bias ply tires. ASAE paper No. 87-1622. St. Joseph MI: ASAE 1987.

    Google Scholar 

  31. Upadhyaya, S.K., et al.: Semi-emperical traction prediction equations based on relevant soil parameters. J. of Terramechanics 34 (1997) No. 3, 141–154.

    Google Scholar 

  32. Schreiber, M.: Kraftstoffverbrauch beim Einsatz von Ackerschleppern im besonderen Hinblick auf CO2-Emissionen. (Tractor fuel consumption with particular reference to CO2 emissions). Ph.D. thesis University of Hohenheim 2006.

    Google Scholar 

  33. Holm, I.C.: Multi-pass behaviour of pneumatic tires. J. of Terramechanics 6 (1969) No. 3, 47–71.

    Google Scholar 

  34. Holm, I.C.: Das Verhalten von Reifen beim mehrmaligen Überfahren einer Spur auf nachgiebigem Boden und der Einfluss auf die Konzeption mehrachsiger Fahrzeuge. (Multi-pass tire mechanics and its influence on the design of multi-axle vehicles). Ph.D. thesis TU Munich 1971. Fortschritt-Ber. VDI-Z, Series 14, No. 17. Düsseldorf: VDI-Verlag 1972.

    Google Scholar 

  35. Senatore, C., and C. Sandu: Off-road tire modelling and the multi-pass effect for vehicle dynamics simulation. J. of Terramechanics 48 (2011) No. 4, 265–276.

    Google Scholar 

  36. Taylor, J.H., et al.: Multipass behavior of a pneumatic tire in tilled soils. Transactions ASAE 25 (1982) No. 5, 1229–1231, 1236.

    Google Scholar 

  37. Renius, K.Th.: European Four-WheeI Drive: Are Technical Advantages Profitable? ASAE Paper 79-1555. St. Joseph, MI: ASAE 1979.

    Google Scholar 

  38. Davidson, J. B.; E. V. Collins, and E.G. McKibben: Tractive efficiency of the farm tractor. Research Bulletin. Iowa Agriculture and Home Economics Experiment Station Vol. 16, No. 189, 257–333. Ames, Iowa: 1935. http://lib.dr.iastate.edu/researchbulletin.

  39. Rempfer, M.: Grundlagen der automatischen Reifendruckverstellung bei Traktoren. (Fundamentals of automatic tire inflation control). Ph.D. thesis TU Munich 2003. Fortschritt-Ber. VDI, Series 14, No. 111. Düsseldorf: VDI-Verlag 2003.

    Google Scholar 

  40. Oida, A., S. Ohkubo, and H. Schwanghart: Effect of tire lug cross section on tire performance simulated by distinct element method. 13th Intern. Conf. ISTVS Sept. 14 –17, 1999 Munich. Proceed. Vol. I, 345–352.

    Google Scholar 

  41. Zhao, C.-L., and M.Y. Zang: Application of the FEM/DEM and alternatively moving road method to the simulation of tire-sand interactions. J. of Terramechanics 72 (2017) 27–38.

    Google Scholar 

  42. Foth, Henry D.: Fundamentals of Soil Science. 8th Edition. Weinheim, Berlin: Wiley-VCH 1991.

    Google Scholar 

  43. Raghavan, G.S.V., et al.: Prediction of clay soil compaction. J. of Terramechanics 14 (1977) No. 1, 31–38.

    Google Scholar 

  44. Stafford, J.V., and P. de Calho Mattos: The effect of forward speed on wheel-induced soil compaction. Laboratory simulation and field experiments. J. of Agric. Engng. Res. 26 (1981) No. 4, 333–347.

    Google Scholar 

  45. Fröhlich, O.K.: Druckverteilung im Baugrunde. (Soil pressure distribution in subsoils). Wien: Springer-Verlag 1934. (Contains fundamentals of Bussinesq).

    Google Scholar 

  46. Söhne, W.: Fundamentals of pressure distribution and soil compaction under tractor tires. Agric. Engineering 39 (1958) No. 5, 276–281 and 290.

    Google Scholar 

  47. Söhne, W.: Druckverteilung im Boden und Bodenverformung unter Schlepperreifen. (Soil stress distribution and compaction under tractor tires). Grundl. Landtechnik No. 5 (1953), 49–63.

    Google Scholar 

  48. -,-: Soil cone penetrometer. ASABE Standard S 313.3, St. Joseph, MI: ASABE 2014.

    Google Scholar 

  49. Turnage, G. W., and D.R. Freitag: Effects of cone velocity and size on soil penetration resistance. ASAE paper 69-670. St. Joseph MI: ASAE 1969.

    Google Scholar 

  50. Steiner, M.: Analyse, Synthese und Berechnungsmethoden der Triebkraft-Schlupf-Kurve von Luftreifen auf nachgiebigem Boden. (Analysis, synthesis and calculation of net traction-slip functions for off-road traction tyres). Ph.D. thesis TU Munich 1979.

    Google Scholar 

  51. W. J. Chancellor, W.J., R. H. Schmidt, and W. Söhne: Laboratory Measurement of Soil Compaction and Plastic Flow. Transactions ASAE 5 (1962) No. 2, 235–239.

    Google Scholar 

  52. Bolling, H.: How to predict soil compaction from agricultural tires. J. of Terramechanics 22 (1986) No. 4, 205–223.

    Google Scholar 

  53. -.-: Machine operation with regard to the trafficability of soils used for agriculture. (bilingual). VDI Richtlinie 6101, 2nd Ed. by VDI-MEG. Berlin: Beuth Verlag 2014.

    Google Scholar 

  54. Hakansson, I: Compaction of Arable Soils. Report 109. Swed. Univ. of Agric. Sciences, Div. of Soil Management. Uppsala: 2005. http://pub.epsilon.slu.se/5517/1/hakansson_i_101206.pdf and ISSN 0348-0976.

  55. Esch, J.H., et al.: Tractive performance comparisons between a rubber belt track and a four-wheel drive tractor. Transactions ASAE 33 (1990) No. 4, 1109–1115.

    Google Scholar 

  56. Sofiyan, A.P., and Y.I. Maximenko: The distribution of pressure under a tracklaying vehicle. J. of Terramechanics 2 (1965) No. 3, 11–16

    Google Scholar 

  57. Wong, J.Y.: Computer aided analysis of the effects of design parameters on the performance of tracked vehicles. J. of Terramechanics 23 (1986) No. 2, 95–124.

    Google Scholar 

  58. Keller, T., and J. Arvidsson: A model for prediction of vertical stress distribution near the soil surface below rubber-tracked undercarriage systems fitted on agricultural vehicles. Soil and Tillage Res. 155 (2016), 116–123.

    Google Scholar 

  59. Verschoore, R., and F. Duquesne: Simulation of the influence of differential control on tractor work rate. J. of Terramechnics 38 (2001) No. 4, 221–231.

    Google Scholar 

  60. Paul, M., and E. Wilks: Driven Front Axles for Agricultural Tractors. ASAE Lecture No. 14. St. Joseph, MI: ASAE 1989.

    Google Scholar 

  61. Reiter, H.: Verluste und Wirkungsgrade bei Traktorgetrieben. (Losses and efficiencies of tractor transmissions). Ph.D. thesis TU Munich. Fortschritt-Ber. VDI Series 14, No. 46. Düsseldorf: VDI-Verlag 1990.

    Google Scholar 

  62. Wiley, J.C., and R.J. Turner: Power Hop Instability of Tractors. ASABE Lecture No. 32. St. Joseph MI: ASABE 2008.

    Google Scholar 

  63. Pichlmaier, B., R. Honzek, and K.Th. Renius: Ein Großtraktor mit drei Achsen – der Weg in die Zukunft? (A high power tractor with three axles – a future concept?). Internat. Conference Land.Technik Sep. 25–26, 2008 Univ. Hohenheim. Proc. 47–52.

    Google Scholar 

  64. Pichlmaier, B.: Traktionsmanagement für Traktoren (Traction management for tractors). Ph.D. thesis TU Munich 2012. Fortschritt-Ber. VDI-Z. Series 14, No. 30. Düsseldorf: VDI-Verlag 2013.

    Google Scholar 

  65. Schwanghart, H.: Kippsicherheit von Fahrzeugen, insbesondere von Traktoren am Hang. (Vehicle overturn safety, mainly for tractors on slopes). 6th Intern. Conf. of ISTVS Vienna 1978. Proceed. Vol. I, 455–477.

    Google Scholar 

  66. Grecenko, A.: Operation on steep slopes: State-of-the-art report. J. of Terramechanics 21 (1984) No. 2, 181–194.

    Google Scholar 

  67. Gibson, H.G., K.C. Elliot, and P.E. Persson: Side slope stability of articulated frame logging tractors. J. of Terramechanics 8 (1971) No. 2, 65–79.

    Google Scholar 

  68. Schwanghart, H.: Schlepperdaten und deren Einfluss auf das Überrollen eines Schleppers. (Tractor specifications and their influence on overturning). Landtechnik 32 (1977) No. 4, 156–159.

    Google Scholar 

  69. Schwanghart, H.: Umsturzverhalten von Traktoren und Auswirkungen auf die Schutzvorrichtungen und die Sicherheit. (Overturning of tractors and consequences on safety frames and human safety). Forsch.-Bericht Agrartechnik MEG Nr. 73. 2nd Edition. TU Munich 1984.

    Google Scholar 

  70. Schwanghart, H.: Berechnungsmethode für das Umsturzverhalten eines Ackerschleppers am Hang. (Calculation of overturning of an agricultural tractor on a slope). Grundl. Landtechnik 23 (1973) No. 6, 170–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Theodor Renius .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Renius, K.T. (2020). Tractor Mechanics. In: Fundamentals of Tractor Design. Springer, Cham. https://doi.org/10.1007/978-3-030-32804-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32804-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32803-0

  • Online ISBN: 978-3-030-32804-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics