Skip to main content

Citizen-Oriented Technologies in the Cities of Tomorrow

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

The paper reviews some of the latest researches and future trends in the field of technologies to support sustainable, comfortable and healthy citizens life in the cities of tomorrow. A specific focus is on advanced methods to guarantee comfort and energy efficiency in the built environment, together with the support to the ageing people in their homes. Innovative sensing systems are presented to monitor both the environment conditions and people in a non-intrusive way, thus allowing the implementation of efficient management strategies and new social services. The review presents real case studies properly equipped with comfort measurement systems, sensor networks including physiological parameters or with specific HVAC and construction components to assess the effects on energy consumptions and comfort levels of different control strategies and configurations. In addition, distributed generation technologies installed at final users together with their increasing awareness in energy consumption patterns, result in the “prosumer”: a citizen that simultaneously acts as an aware energy consumer and producer. Based on the achieved outcomes, a discussion about the most promising research lines for citizen-oriented technologies in the cities of tomorrow is finally presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IPCC—Intergovernmental Panel on Climate Change. https://www.ipcc.ch/. Accessed 11 Feb 2019

  2. Dijst M, Worrell E, Böcker L et al (2018) Exploring urban metabolism—Towards an interdisciplinary perspective. Resour Conserv Recycl 132:190–203. https://doi.org/10.1016/j.resconrec.2017.09.014

    Article  Google Scholar 

  3. Al horr Y, Arif M, Katafygiotou M et al (2016) Impact of indoor environmental quality on occupant well-being and comfort: a review of the literature. Int J Sustain Built Environ 5:1–11. https://doi.org/10.1016/j.ijsbe.2016.03.006

    Article  Google Scholar 

  4. De Giuli V, Da Pos O, De Carli M (2012) Indoor environmental quality and pupil perception in Italian primary schools. Build Environ 56:335–345. https://doi.org/10.1016/j.buildenv.2012.03.024

    Article  Google Scholar 

  5. Van Den Broek G, Cavallo F, Odetti L, and Wehrmann C SFP (European 2010) AALIANCE Ambient Assisted Living Roadmap. IOS Press

    Google Scholar 

  6. Maillard N, Perrotton F, Delage E et al (2014) Cardiac remote monitoring in France. Arch Cardiovasc Dis 107:253–260. https://doi.org/10.1016/j.acvd.2014.02.004

    Article  Google Scholar 

  7. Triantafyllidis A, Velardo C, Chantler T et al (2015) A Personalised mobile-based home monitoring system for heart failure: the SUPPORT-HF study. Int J Med Inf. https://doi.org/10.1016/j.ijmedinf.2015.05.003

    Article  Google Scholar 

  8. Comodi G, Cioccolanti L, Renzi M (2014) Modelling the Italian household sector at the municipal scale: micro-CHP, renewables and energy efficiency. Energy 68:92–103. https://doi.org/10.1016/j.energy.2014.02.055

    Article  Google Scholar 

  9. Comodi G, Cioccolanti L, Polonara F, Brandoni C (2012) Local authorities in the context of energy and climate policy. Energy Policy 51:737–748. https://doi.org/10.1016/j.enpol.2012.09.019

    Article  Google Scholar 

  10. Comodi G, Cioccolanti L, Gargiulo M (2012) Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES. Energy Policy 41:303–315. https://doi.org/10.1016/j.enpol.2011.10.049

    Article  Google Scholar 

  11. EC (2016a) COM(2016) 860 final. Clean energy for all europeans. Brussels, 30.11.2016

    Google Scholar 

  12. Paris Agreement

    Google Scholar 

  13. Revel GM, Arnesano M, Pietroni F (2014) Development and validation of a low-cost infrared measurement system for real-time monitoring of indoor thermal comfort. Meas Sci Technol 25:085101. https://doi.org/10.1088/0957-0233/25/8/085101

    Article  Google Scholar 

  14. Revel GM, Arnesano M, Pietroni F (2015) Integration of Real-Time Metabolic Rate Measurement in a Low-Cost Tool for the Thermal Comfort Monitoring in AAL Environments. In: Andò B, Siciliano P, Marletta V, Monteriù A (eds) Ambient Assisted Living: Italian Forum 2014. Springer International Publishing, Cham, pp 101–110

    Chapter  Google Scholar 

  15. Arnesano M, Calvaresi A, Pietroni F, et al (2018) A Sub-Zonal PMV-Based HVAC and Façade control system for curtain wall buildings. Proceedings 2:1138. https://doi.org/10.3390/proceedings2151138

    Article  Google Scholar 

  16. Ghasemzadeh H, Loseu V, Jafari R (2010) Structural action recognition in body sensor networks: distributed classification based on string matching. IEEE Trans Inf Technol Biomed 14:425–435. https://doi.org/10.1109/TITB.2009.2036722

    Article  Google Scholar 

  17. Sufi F, Fang Q, Khalil I, Mahmoud SS (2009) Novel methods of faster cardiovascular diagnosis in wireless telecardiology. IEEE J Sel Areas Commun 27:537–552. https://doi.org/10.1109/JSAC.2009.090515

    Article  Google Scholar 

  18. López-Cózar R, Callejas Z (2010) Multimodal dialogue for ambient intelligence and smart environments. In: Nakashima H, Aghajan H, Augusto JC (eds) Handbook of ambient intelligence and smart environments. Springer, US, Boston, MA, pp 559–579

    Chapter  Google Scholar 

  19. Park K, Lim S (2015) A multipurpose smart activity monitoring system for personalized health services. Inf Sci 314:240–254. https://doi.org/10.1016/j.ins.2014.10.036

    Article  Google Scholar 

  20. eWare—Early Warning Accompanies Robotics Excellence. https://aal-eware.eu/wp/. Accessed 12 Dec 2018

  21. Casaccia S, Pietroni F, Calvaresi A, et al (2016) Smart monitoring of Userźs health at home: performance evaluation and signal processing of a wearable sensor for the measurement of heart rate and breathing rate. In: Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies. SCITEPRESS—Science and Technology Publications, Lda, Portugal, pp 175–182

    Google Scholar 

  22. Monteriù A, Prist MR, Frontoni E et al (2018) A smart sensing architecture for domestic monitoring: methodological approach and experimental validation. Sensors 18:2310. https://doi.org/10.3390/s18072310

    Article  Google Scholar 

  23. Kwak YT, Yang Y, Koo M-S (2015) Wandering in Dementia. Dementia and Neurocognitive Disorders 14:99–105. https://doi.org/10.12779/dnd.2015.14.3.99

    Article  Google Scholar 

  24. Ulpiani G, Borgognoni M, Romagnoli A, Di Perna C (2016) Comparing the performance of on/off, PID and fuzzy controllers applied to the heating system of an energy-efficient building. Energy Build 116:1–17. https://doi.org/10.1016/j.enbuild.2015.12.027

    Article  Google Scholar 

  25. Peeters L, Van der Veken J, Hens H et al (2008) Control of heating systems in residential buildings: current practice. Energy Build 40:1446–1455. https://doi.org/10.1016/j.enbuild.2008.02.016

    Article  Google Scholar 

  26. O’Dwyer A (2006) Handbook of PI and PID controller tuning rules. World Scientific

    Google Scholar 

  27. UNI, UNI TS 11300-2 (2014), Energy performance of buildings—Part 2: Evaluation of primary energy need and of system efficiencies for space heating, domestic hot water production, ventilation and lighting for non-residential buildings

    Google Scholar 

  28. CEN, EN 15251 (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics

    Google Scholar 

  29. Stazi F, Naspi F, Ulpiani G, Di Perna C (2017) Indoor air quality and thermal comfort optimization in classrooms developing an automatic system for windows opening and closing. Energy Build 139:732–746. https://doi.org/10.1016/j.enbuild.2017.01.017

    Article  Google Scholar 

  30. McCartney KJ, Fergus Nicol J (2002) Developing an adaptive control algorithm for Europe. Energy Build 34:623–635. https://doi.org/10.1016/S0378-7788(02)00013-0

    Article  Google Scholar 

  31. Schweiker M, Haldi F, Shukuya M, Robinson D (2012) Verification of stochastic models of window opening behaviour for residential buildings. J Build Perform Simul 5:55–74. https://doi.org/10.1080/19401493.2011.567422

    Article  Google Scholar 

  32. Schakib-Ekbatan K, Çakıcı FZ, Schweiker M, Wagner A (2015) Does the occupant behavior match the energy concept of the building?—analysis of a German naturally ventilated office building. Build Environ 84:142–150. https://doi.org/10.1016/j.buildenv.2014.10.018

    Article  Google Scholar 

  33. ASHRAE G (2004), Atlanta, ASHRAE 55 Thermal Environmental Conditions for Human Occupancy

    Google Scholar 

  34. Education Funding Agency (2014). Building Bulletin 101 Ventilation of School Buildings, Educ. Funding Agency. doi:011-2711642

    Google Scholar 

  35. Principi P, Fioretti R (2012) Thermal analysis of the application of pcm and low emissivity coating in hollow bricks. Energy Build 51:131–142. https://doi.org/10.1016/j.enbuild.2012.04.022

    Article  Google Scholar 

  36. Caresana F, Brandoni C, Feliciotti P, Bartolini CM (2011) Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator. Appl Energy 88:659–671. https://doi.org/10.1016/j.apenergy.2010.08.016

    Article  Google Scholar 

  37. Copertaro B, Fioretti R, Principi P (2016) Thermal analysis on a phase change material latent heat storage in a cold room in case of power outage. In: 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). pp 1–5

    Google Scholar 

  38. Fioretti R, Principi P, Copertaro B (2016) A refrigerated container envelope with a PCM (Phase Change Material) layer: Experimental and theoretical investigation in a representative town in Central Italy. Energy Convers Manag 122:131–141. https://doi.org/10.1016/j.enconman.2016.05.071

    Article  Google Scholar 

  39. Copertaro B, Principi P, Fioretti R (2016) Thermal performance analysis of PCM in refrigerated container envelopes in the Italian context—Numerical modeling and validation. Appl Therm Eng 102:873–881. https://doi.org/10.1016/j.applthermaleng.2016.04.050

    Article  Google Scholar 

  40. Brandoni C, Renzi M, Caresana F, Polonara F (2014) Simulation of hybrid renewable microgeneration systems for variable electricity prices. Appl Therm Eng 71:667–676. https://doi.org/10.1016/j.applthermaleng.2013.10.044

    Article  Google Scholar 

  41. Comodi G, Renzi M, Caresana F, Pelagalli L (2015) Enhancing micro gas turbine performance in hot climates through inlet air cooling vapour compression technique. Appl Energy 147:40–48. https://doi.org/10.1016/j.apenergy.2015.02.076

    Article  Google Scholar 

  42. Renzi M, Caresana F, Pelagalli L, Comodi G (2014) Enhancing micro gas turbine performance through fogging technique: Experimental analysis. Appl Energy 135:165–173. https://doi.org/10.1016/j.apenergy.2014.08.084

    Article  Google Scholar 

  43. Caresana F, Pelagalli L, Comodi G, Renzi M (2014) Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on global performance and components’ behavior. Appl Energy 124:17–27. https://doi.org/10.1016/j.apenergy.2014.02.075

    Article  Google Scholar 

  44. Caresana F, Comodi G, Pelagalli L et al (2011) Use of a test-bed to study the performance of micro gas turbines for cogeneration applications. Appl Therm Eng 31:3552–3558. https://doi.org/10.1016/j.applthermaleng.2011.07.016

    Article  Google Scholar 

  45. Renzi M, Egidi L, Comodi G (2015) Performance analysis of two 3.5kWp CPV systems under real operating conditions. Appl Energy 160:687–696. https://doi.org/10.1016/j.apenergy.2015.08.096

    Article  Google Scholar 

  46. Comodi G, Renzi M, Cioccolanti L et al (2015) Hybrid system with micro gas turbine and PV (photovoltaic) plant: Guidelines for sizing and management strategies. Energy 89:226–235. https://doi.org/10.1016/j.energy.2015.07.072

    Article  Google Scholar 

  47. Comodi G, Rossi M (2016) Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency. Energy 109:124–136. https://doi.org/10.1016/j.energy.2016.04.017

    Article  Google Scholar 

  48. Comodi G, Lorenzetti M, Salvi D, Arteconi A (2017) Criticalities of district heating in Southern Europe: Lesson learned from a CHP-DH in Central Italy. Appl Therm Eng 112:649–659. https://doi.org/10.1016/j.applthermaleng.2016.09.149

    Article  Google Scholar 

  49. Comodi G, Giantomassi A, Severini M et al (2015) Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies. Appl Energy 137:854–866. https://doi.org/10.1016/j.apenergy.2014.07.068

    Article  Google Scholar 

  50. Arteconi A, Ciarrocchi E, Pan Q et al (2017) Thermal energy storage coupled with PV panels for demand side management of industrial building cooling loads. Appl Energy 185:1984–1993. https://doi.org/10.1016/j.apenergy.2016.01.025

    Article  Google Scholar 

  51. Ciabattoni L, Comodi G, Ferracuti F et al (2015) Multi-apartment residential microgrid monitoring system based on kernel canonical variate analysis. Neurocomputing 170:306–317. https://doi.org/10.1016/j.neucom.2015.04.099

    Article  Google Scholar 

  52. Killian M, Mayer B, Kozek M (2016) Cooperative fuzzy model predictive control for heating and cooling of buildings. Energy Build 112:130–140. https://doi.org/10.1016/j.enbuild.2015.12.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Marco Revel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arnesano, M. et al. (2019). Citizen-Oriented Technologies in the Cities of Tomorrow. In: Longhi, S., Monteriù, A., Freddi, A., Frontoni, E., Germani, M., Revel, G. (eds) The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-32762-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32762-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32761-3

  • Online ISBN: 978-3-030-32762-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics