Skip to main content

Digital Signal Processing for Audio Applications: Then, Now and the Future

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

In the last fifty years, the development of new technologies has enabled machines to sustain the ever increasing computational load, thus providing the implementation capability requested by real time applications. In this context, digital signal processing played an important role especially with relation to audio systems. Several approaches have been proposed to solve the main issues of the audio field in complex scenarios, including advanced audio rendering applications and acoustic monitoring systems exploiting multirate adaptive algorithms, machine learning techniques and deep neural circuits. Following this trend and based on our experience, the future will witness the joint use of these techniques to design applications able to improve quality and comfort of people’s daily life. Among them, in this contribution we want to focus on the employment of advanced audio augmented reality solutions, involving both virtual audio sensors and transducers, to design enhanced spatial hearing experiences in diverse application contexts, spanning from entertainment to safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acampora G, Cook DJ, Rashidi P, Vasilakos AV (2013) A survey on ambient intelligence in healthcare. Proc IEEE 101(12):2470–2494

    Article  Google Scholar 

  2. Alsina-Pagès R, Navarro J, Alías F, Hervás M (2017) Homesound: real-time audio event detection based on high performance computing for behaviour and surveillance remote monitoring. Sensors 17(4):854

    Article  Google Scholar 

  3. Azpicueta-Ruiz LA, Zeller M, Figueiras-Vidal AR, Arenas-Garcia J, Kellermann W (2011) Adaptive combination of volterra kernels and its application to nonlinear acoustic echo cancellation. IEEE Trans Audio Speech Lang Process 19(11):97–110

    Article  Google Scholar 

  4. Bharitkar S, Kyriakakis C (2006) Immersive audio signal processing. Springer Science & Business Media

    Google Scholar 

  5. Bonfigli R, Ferroni G, Principi E, Squartini S, Piazza F (2014) A real-time implementation of an acoustic novelty detector on the beagleboard-xm. In: 2014 6th European embedded design in education and research conference (EDERC). IEEE, pp 307–311

    Google Scholar 

  6. Burton TG, Goubran RA (2011) A generalized proportional subband adaptive second order volterra filter for acoustic echo cancellation in changing environments. IEEE Trans Audio Speech Lang Process 19(8):2364–2373

    Article  Google Scholar 

  7. Carini A, Cecchi S, Piazza F, Omiciuolo I, Sicuranza GL (2012) Multiple position room response equalization in frequency domain. IEEE Trans Audio Speech Lang Process 20(1):122–135

    Article  Google Scholar 

  8. Carini A, Cecchi S, Orcioni S (2018) Orthogonal lip nonlinear filters. In: Comminello D, Príncipe JC (eds) Adaptive learning methods for nonlinear system modeling, chapter 2. Elsevier

    Google Scholar 

  9. Carini A, Cecchi S, Terenzi A, Orcioni S (2018) On room impulse response measurement using perfect sequences for wiener nonlinear filters. In 2018 26th European signal processing conference (EUSIPCO). IEEE, pp 982–986

    Google Scholar 

  10. Carini A, Romoli L, Cecchi S, Orcioni S (2016) Perfect periodic sequences for nonlinear wiener filters. In 2016 24th European signal processing conference (EUSIPCO), pp 1788–1792

    Google Scholar 

  11. Cecchi S, Palestini L, Peretti P, Romoli L, Piazza F, Carini A (2011) Evaluation of a multipoint equalization system based on impulse response prototype extraction. J Audio Eng Soc 59(3):110–123

    Google Scholar 

  12. Cecchi S, Romoli L, Carini A, Piazza F (2014) A multichannel and multiple position adaptive room response equalizer in warped domain: real-time implementation and performance evaluation. Appl Acoust 82:28–37

    Article  Google Scholar 

  13. Cecchi S, Carini A, Spors S (2018) Room response equalization—a review. Appl Sci 8(1):16

    Article  Google Scholar 

  14. Chin-Feng L, Sung-Yen C, Han-Chieh C, Yueh-Min H (2011) Detection of cognitive injured body region using multiple triaxial accelerometers for elderly falling. IEEE Sens J 11(3):763–770

    Article  Google Scholar 

  15. Droghini D, Ferretti D, Principi E, Squartini S, Francesco F, (2017) A combined one-class svm and template-matching approach for user-aided human fall detection by means of floor acoustic features. Comput Intell Neurosci

    Google Scholar 

  16. Gamper H et al (2014) Enabling technologies for audio augmented reality systems. PhD thesis, Aalto University

    Google Scholar 

  17. García-Hernández A, Galván-Tejada C, Galván-Tejada J, Celaya-Padilla J, Gamboa-Rosales H, Velasco-Elizondo P, Cárdenas-Vargas R (017) A similarity analysis of audio signal to develop a human activity recognition using similarity networks. Sensors 17(11):2688

    Article  Google Scholar 

  18. George NV, Panda G (2013) Advances in active noise control: a survey, with emphasis on recent nonlinear techniques. Signal Process 93(2):363–377

    Article  Google Scholar 

  19. Goussard Y, Krenz W, Stark L (1985) An improvement of the lee and schetzen cross-correlation method. IEEE Trans Autom Control AC-30(9):895–898

    Article  Google Scholar 

  20. Hai ND, Chaudhary NK, Peksi S, Ranjan R, He J, Gan WS (2017) Fast HRFT measurement system with unconstrained head movements for 3d audio in virtual and augmented reality applications. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 6576–6577

    Google Scholar 

  21. Härmä A, Jakka J, Tikander M, Karjalainen M, Lokki T, Hiipakka J, Lorho G (2004) Augmented reality audio for mobile and wearable appliances. J Audio Eng Soc 52(6):618–639

    Google Scholar 

  22. Hatziantoniou PD, Mourjopoulos JN (2004) Errors in real-time room acoustics dereverberation. J Audio Eng Soc 52(9):883–899

    Google Scholar 

  23. Huggins-Daines D, Kumar M, Chan M, Black AW, Ravishankar M, Rudnicky AI (2006) Pocketsphinx: a free, real-time continuous speech recognition system for hand-held devices. In 2006 IEEE international conference on acoustics, speech and signal processing ICASSP 2006 proceedings, vol 1. IEEE, p I

    Google Scholar 

  24. Hu S, Rajamani R, Yu X (2011) Active noise control for selective cancellation of external disturbances. In American control conference (ACC). IEEE, pp 4737–4742

    Google Scholar 

  25. Kim H-G, Moreau N, Sikora T (2006) MPEG-7 audio and beyond: audio content indexing and retrieval. Wiley

    Google Scholar 

  26. Kim C, Stern RM (2012) Power-normalized cepstral coefficients (PNCC) for robust speech recognition. In 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 4101–4104

    Google Scholar 

  27. Kleiner M, Dalenbäck BI, Svensson P (1993) Auralization-an overview. J Audio Eng Soc 41(11):861–875

    Google Scholar 

  28. Kuo SM, Mitra S, Gan WS (2006) Active noise control system for headphone applications. IEEE Trans Control Syst Tech 14(2):331–335

    Article  Google Scholar 

  29. Kyriakakis C (1998) Fundamental and technological limitations of immersive audio systems. Proc IEEE 86(5):941–951

    Article  Google Scholar 

  30. Lee YW, Schetzen M (1965) Measurement of the wiener kernels of a nonlinear system by crosscorrelation. 2(3):237–254

    Google Scholar 

  31. Li Y, Ho KC, Popescu M (2012) A microphone array system for automatic fall detection. IEEE Trans Biomed Eng 59(5):1291–1301

    Google Scholar 

  32. Li Y, Ho KC, Popescu M (2014) Efficient source separation algorithms for acoustic fall detection using a microsoft kinect. IEEE Trans Biomed Eng 61(3):745–755

    Article  Google Scholar 

  33. Markos M, Sameer S (2003) Novelty detection: a review-part 1: statistical approaches. Signal process 83(12):2481–2497

    Article  Google Scholar 

  34. Markos M, Sameer S (2003) Novelty detection: a review-part 2: neural network based approaches. Signal proces 83(12):2499–2521

    Article  Google Scholar 

  35. Mourjopoulos J (1985) On the variation and invertibility of room impulse response functions. J Sound Vib 102(2):217–228

    Article  Google Scholar 

  36. Mourjopoulos J (2003) Comments on’analysis of traditional and reverberation-reducing methods of room equalization’. J Audio Eng Soc 51(12):1186–1188

    Google Scholar 

  37. Muhammad M, Ling S, Luke S (2013) A survey on fall detection: principles and approaches. Neurocomputing 100:144–152

    Article  Google Scholar 

  38. Neely ST, Allen JB (1979) Invertibility of a room impulse response. J Acousti Soc Am 66(1):165–169

    Article  Google Scholar 

  39. Ntalampiras S, Potamitis I, Fakotakis N (2011) Probabilistic novelty detection for acoustic surveillance under real-world conditions. IEEE Trans Multimed 13(4):713–719

    Article  Google Scholar 

  40. Orcioni S (2014) Improving the approximation ability of volterra series identified with a cross-correlation method. Nonlinear Dyn 78(4):2861–2869

    Article  Google Scholar 

  41. Orcioni S, Carini A, Cecchi S, Terenzi A, Piazza F (2018) Identification of nonlinear audio devices exploiting multiple-variance method and perfect sequences. In Audio engineering society AES 144th convention paper

    Google Scholar 

  42. Orcioni S, Cecchi S, Carini A (2017) Multivariance nonlinear system identification using wiener basis functions and perfect sequences. In 2017 25th European signal processing conference (EUSIPCO), pp 2748–2752

    Google Scholar 

  43. Orcioni S, Pirani M, Turchetti C (2005) Advances in Lee-Schetzen method for volterra filter identification. Multidimens Sys Sig Process 16(3):265–284

    Article  Google Scholar 

  44. Orcioni S, Pirani M, Turchetti C, Conti M (2002) Practical notes on two volterra filter identification direct methods. In Proceedings of IEEE international symposium on circuits and systems ISCAS’02, vol 3. Scottsdale, Arizona, pp 587–590

    Google Scholar 

  45. Orcioni S, Terenzi A, Cecchi S, Piazza F, Carini A (2018) Identification of Volterra models of tube audio devices using multiple-variance method. J Audio Eng Soc 66(10):823–838

    Article  Google Scholar 

  46. Paoli R, Fernández-Luque FJ, Doménech G, Martínez F, Zapata J, Ruiz R (2012) A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. Expert Syst Appl 39(5):5566–5575

    Article  Google Scholar 

  47. Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review of novelty detection. Signal Process 99:215–249

    Article  Google Scholar 

  48. Pirani M, Orcioni S, Turchetti C (2004) Diagonal kernel point estimation of n-th order discrete Volterra-wiener systems. EURASIP J Appl Signal Process 12:1807–1816

    Google Scholar 

  49. Pires IM, Santos R, Pombo N, Garcia NM, Florez-Revuelta F, Spinsante S, Goleva R, Zdravevski E (2018) Recognition of activities of daily living based on environmental analyses using audio fingerprinting techniques: a systematic review. Sensors 18(160):23

    Article  Google Scholar 

  50. Principi E, Droghini D, Squartini S, Olivetti O, Piazza F (2016) Acoustic cues from the floor: a new approach for fall classification. Expert Syst Appl 60:51–61

    Article  Google Scholar 

  51. Principi E, Squartini S, Bonfigli R, Ferroni G, Piazza F (2015) An integrated system for voice command recognition and emergency detection based on audio signals. Expert Syst Appl 42(13):5668–5683

    Article  Google Scholar 

  52. Principi E, Squartini S, Piazza F, Fuselli D, Bonifazi M (2013) A distributed system for recognizing home automation commands and distress calls in the italian language. In Interspeech, pp 2049–2053

    Google Scholar 

  53. Rämö J, Välimäki V (2012) Digital augmented reality audio headset. J Electr Comput Eng

    Google Scholar 

  54. Ranjan R, Gan WS (2015) Natural listening over headphones in augmented reality using adaptive filtering techniques. IEEE/ACM Trans Audio Speech Lang Process (TASLP) 23(11):1988–2002

    Article  Google Scholar 

  55. Rougier C, Meunier J, St-Arnaud A, Rousseau J (2011) Robust video surveillance for fall detection based on human shape deformation. IEEE Trans circuits syst video Technol 21(5):611–622

    Article  Google Scholar 

  56. Schetzen M (1974) A theory of non-linear system identification. Int J Control 20(4):577–592

    Article  Google Scholar 

  57. Squartini S, Principi E, Rotili R, Piazza F (2012) Environmental robust speech and speaker recognition through multi-channel histogram equalization. Neurocomputing 78(1):111–120

    Article  Google Scholar 

  58. Tan L, Jiang J (1997) Filtered-X second-order Volterra adaptive algorithms. Electron Lett 33(8):671–672

    Article  Google Scholar 

  59. Tronchin L (2012) The emulation of nonlinear time-invariant audio systems with memory by means of Volterra series. J Audio Eng Soc 60(12):984–996

    Google Scholar 

  60. Tronchin L, Coli VL (2015) Further investigations in the emulation of nonlinear systems with Volterra series. J Audio Eng Soc 63(9):671–683

    Article  Google Scholar 

  61. Valimaki V, Franck A, Ramo J, Gamper H, Savioja L (2015) Assisted listening using a headset: enhancing audio perception in real, augmented, and virtual environments. IEEE Signal Process Mag 32(2):92–99

    Article  Google Scholar 

  62. Wiener N (1966) Nonlinear problems in random theory. The MIT Press, Cambridge, MA

    Google Scholar 

  63. Yazar A, Keskin F, Töreyin BU, Çetin AE (2013) Fall detection using single-tree complex wavelet transform. Pattern Recognit Lett 34(15):1945–1952

    Article  Google Scholar 

  64. Zhou G, Hansen JH, Kaiser JF (2001) Nonlinear feature based classification of speech under stress. IEEE Trans Speech Audio Process 9(3):201–216

    Article  Google Scholar 

  65. Zhuang X, Huang J, Potamianos G, Hasegawa-Johnson M (2009) Acoustic fall detection using gaussian mixture models and gmm supervectors

    Google Scholar 

  66. Zigel Y, Litvak D, Gannot I (2009) A method for automatic fall detection of elderly people using floor vibrations and sound-proof of concept on human mimicking doll falls. IEEE Trans Biomed Eng 56(12):2858–2867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Cecchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piazza, F. et al. (2019). Digital Signal Processing for Audio Applications: Then, Now and the Future. In: Longhi, S., Monteriù, A., Freddi, A., Frontoni, E., Germani, M., Revel, G. (eds) The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-32762-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32762-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32761-3

  • Online ISBN: 978-3-030-32762-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics