Skip to main content

The Role of Advanced Materials in the Development of Innovative Manufacturing Processes

  • Chapter
  • First Online:
The First Outstanding 50 Years of “Università Politecnica delle Marche”

Abstract

The present contribution reports on the cutting-edge research activities performed by the authors in the field of innovative manufacturing processes applied to advanced light alloys. These include Friction Stir Welding (FSW), Friction Stir Extrusion (FSE), and Additive Manufacturing (AM). Two new FSW configurations are here introduced and described. A first double-side friction stir welding (DS-FSW), where the welding is performed on both sheet surfaces, one after the other. A second rotating tool FSW (RT-FSW), in which pin is made to rotate around its centerline welding direction, by 0.5 and 1.0 mm. The feasibility of solid-state recycling of a case study, such as an AA1099 machining chips, is exploited using FSE process. In addition, in order to optimize the die design and the process parameters, finite-element (FE) simulation of the process was carried out. The game-changing potential of the metal AM technology is un-veiled through results obtained on light alloys for biomedical applications produced by Powder Bed Fusion (PBF).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Su J-Q, Nelson TW, Mishra R et al (2003) Microstructural investigation of friction stir welded 7050–T651 aluminium. Acta Mater 51:713–729

    Article  Google Scholar 

  2. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32:2879–2884

    Article  Google Scholar 

  3. Nicholas ED, Thomas WM (1998) A review of friction processes for aerospace applications. Int J Mater Prod Technol 13:45–54

    Google Scholar 

  4. Dawes CJ, Thomas WM (1996) Friction stir process welds aluminum alloys. Weld J 75:41–45

    Google Scholar 

  5. Heinz B, Skrotzki B (2002) Characterization of a friction-stir-welded aluminum alloy 6013. Metall Mater Trans B 33:489–498

    Article  Google Scholar 

  6. Mahoney MW, Rhodes CG, Flintoff JG et al (1998) The rate-controlling mechanism in superplasticity. Metall Mater Trans A 29:1955–1964

    Article  Google Scholar 

  7. Jata KV, Sankaran KK, Ruschau JJ (2000) Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050–T7451. Metall Mater Trans A 31:2181–2192

    Article  Google Scholar 

  8. Kumbhar NT, Sahoo SK, Samajdar I et al (2011) Microstructure and microtextural studies of friction stir welded aluminium alloy 5052. Mater Des 32:1657–1666

    Article  Google Scholar 

  9. Oosterkamp A, Oosterkamp LD, Nordeide A (2004) Kissing bond phenomena in solid-state welds of aluminum alloys. Weld J 83:225s–231s

    Google Scholar 

  10. Forcellese A, Fratini L, Gabrielli F et al (2010) Formability of friction stir welded AZ31 magnesium alloy sheets. Mater Sci Forum 638–642:1249–1254

    Article  Google Scholar 

  11. Simoncini M, Cabibbo M, Forcellese A (2015) Development of double-side friction stir welding to improve post-welding formability of joints in AA6082 aluminum alloys. Proc IMechE Part B: J Eng Manuf 2015:1–11

    Google Scholar 

  12. Cabibbo M, Forcellese A, El Mehtedi M et al (2014) Double side friction stir welding of AA6082 sheets: microstructure and nanoindentation characterization. Mater Sci Eng A 590:209–217

    Article  Google Scholar 

  13. Cabibbo M, Forcellese A, Simoncini M et al (2016) Effect of welding motion and pre-/post-annealing of friction stir welded AA5754 joints. Mater Des 93:146–159

    Article  Google Scholar 

  14. Tang W, Reynolds AP (2010) Production of wire via friction extrusion of aluminum alloy machining chips. J Mater Process Tech 210:2231–2237

    Article  Google Scholar 

  15. Behnagh RA, Mahdavinejad R, Yavari A et al (2014) Production of wire from AA7277 aluminum chips via friction-stir extrusion (FSE). Metall Mater Trans B 45:1484–1489

    Article  Google Scholar 

  16. Baffari D, Buffa G, Campanella D et al (2017) Al-SiC Metal matrix composite production through friction stir extrusion of aluminum chips. Proc Eng 207:419–427

    Article  Google Scholar 

  17. Mehtedi ME, Forcellese A, Simoncini M et al (2018) A sustainable solid state recycling of pure aluminum by means of friction stir extrusion process (FSE). AIP Conf Proc 1960:030004

    Article  Google Scholar 

  18. Behnagh RA, Shen N, Ansari MA et al (2016) Experimental analysis and microstructure modeling of friction stir extrusion of magnesium chips. J Manuf Sci Eng 138:04100

    Article  Google Scholar 

  19. Hosseini A, Azarsa E, Davoodi B et al (2012) Effect of process parameters on the physical properties of wires produced by friction extrusion method. Int J Adv Eng. Technol 3:592–597

    Google Scholar 

  20. Sharifzadeh M, Ansari MA, Narvan M et al (2015) Evaluation of wear and corrosion resistance of pure Mg wire produced by friction stir extrusion. Trans Nonferrous Metal Soc 25:1847–1855

    Article  Google Scholar 

  21. Baffari D, Buffa G, Campanella D et al (2017) Process mechanics in friction stir extrusion of magnesium alloys chips through experiments and numerical simulation. J Manuf Process 29:41–49

    Article  Google Scholar 

  22. Dehoff RR, Tallman C, Duty EC (2013) Case study: additive manufacturing of aerospace brackets. Adv Mater Process 171:19–22

    Google Scholar 

  23. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928

    Article  Google Scholar 

  24. Kirka MM, Nandwana P, Lee Y et al (2017) Solidification and solid-state transformation sciences in metal additive manufacturing. Scr Mater 135:130–134

    Article  Google Scholar 

  25. Murr LE (2018) A metallographic review of 3D printing/additive manufacturing of metal and alloy products and components. Metallogr Microstruct Anal 7:103–132

    Article  Google Scholar 

  26. Seifi M, Salem A, Satko D et al (2017) Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. Int J Fatigue 94:263–287

    Article  Google Scholar 

  27. Hackel L, Rankin JR, Rubenchik A et al (2018) Laser peening: a tool for additive manufacturing post-processing. Addit Manuf 24:67–75

    Article  Google Scholar 

  28. Sato M, Takakuwa O, Nakai M et al (2016) Using cavitation peening to improve the fatigue life of titanium alloy Ti-6Al-4V manufactured by electron beam melting. Mater Sci Appl 7:181–191

    Google Scholar 

  29. Yap CY, Chua CK, Dong ZL et al (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2:041101

    Article  Google Scholar 

  30. Mengucci P, Gatto A, Bassoli E et al (2017) Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering. J Mech Behav Biomed Mater 71:1–9

    Article  Google Scholar 

  31. Simoncini M, Forcellese A (2012) Effect of the welding parameters and tool configuration on micro- and macro-mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets. Mater Des 41:50–60

    Article  Google Scholar 

  32. Forcellese A, Simoncini M (2012) Plastic flow behaviour and formability of friction stir welded joints in AZ31 thin sheets obtained using the ‘pinless’ tool configuration. Mater Des 36:123–129

    Article  Google Scholar 

  33. Kim D, Lee W, Kim J et al (2010) Formability evaluation of friction stir welded 6111–T4 sheet with respect to joining material direction. Int J Mech Sci 52:612–625

    Article  Google Scholar 

  34. Nicoletto G, Konečná R, Frkáň M et al (2018) Surface roughness and directional fatigue behavior of as-built EBM and DMLS Ti6Al4V. Int J Fatigue 116:140–148

    Article  Google Scholar 

  35. Beretta S, Romano S et al (2017) A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes. Int J Fatigue 94:178–191

    Article  Google Scholar 

  36. Mantri SA, Alam T, Choudhuri D et al (2017) The effect of boron on the grain size and texture in additively manufactured β-Ti alloys. J Mater Sci 52:12455–12466

    Article  Google Scholar 

  37. Azizi H, Zurob H, Bose B et al (2018) Additive manufacturing of a novel Ti-Al-V-Fe alloy using selective laser melting. Addit Manuf 21:529–535

    Article  Google Scholar 

  38. Barriobero-Vila P, Gussone J, Stark A et al (2018) Peritectic titanium alloys for 3D printing. Nat Commun 9:3426

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Cabibbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruni, C., Cabibbo, M., Mehtedi, M.E., Forcellese, A., Santecchia, E., Spigarelli, S. (2019). The Role of Advanced Materials in the Development of Innovative Manufacturing Processes. In: Longhi, S., Monteriù, A., Freddi, A., Frontoni, E., Germani, M., Revel, G. (eds) The First Outstanding 50 Years of “Università Politecnica delle Marche”. Springer, Cham. https://doi.org/10.1007/978-3-030-32762-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32762-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32761-3

  • Online ISBN: 978-3-030-32762-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics