Skip to main content

Deep Transfer Learning for Whole-Brain FMRI Analyses

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11796))

Abstract

The application of deep learning (DL) models to the decoding of cognitive states from whole-brain functional Magnetic Resonance Imaging (fMRI) data is often hindered by the small sample size and high dimensionality of these datasets. Especially, in clinical settings, where patient data are scarce. In this work, we demonstrate that transfer learning represents a solution to this problem. Particularly, we show that a DL model, which has been previously trained on a large openly available fMRI dataset of the Human Connectome Project, outperforms a model variant with the same architecture, but which is trained from scratch, when both are applied to the data of a new, unrelated fMRI task. The pre-trained DL model variant is able to correctly decode 67.51% of the cognitive states from a test dataset with 100 individuals, when fine-tuned on a dataset of the size of only three subjects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barch, D.M., Burgess, G.C., Harms, M.P., et al.: Function in the human connectome: task-fmri and individual differences in behavior. Neuroimage 80, 169–189 (2013)

    Article  Google Scholar 

  2. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  3. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  4. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  5. Huang, H., Hu, X., Zhao, Y., et al.: Modeling task fMRI data via deep convolutional autoencoder. IEEE Trans. Med. Imaging 37(7), 1551–1561 (2017)

    Google Scholar 

  6. Jang, H., Plis, S.M., Calhoun, V.D., et al.: Task-specific feature extraction and classification of fmri volumes using a deep neural network initialized with a deep belief network: evaluation using sensorimotor tasks. NeuroImage 145, 314–328 (2017)

    Article  Google Scholar 

  7. Lapuschkin, S., Wäldchen, S., Binder, A., et al.: Unmasking clever hans predictors and assessing what machines really learn. Nature Commun. 10, 1096 (2019)

    Article  Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  9. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

    Google Scholar 

  10. Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.R.: Introduction to machine learning for brain imaging. Neuroimage 56(2), 387–399 (2011)

    Article  Google Scholar 

  11. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  12. Plis, S.M., Hjelm, D.R., Salakhutdinov, R., et al.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8, 229 (2014)

    Article  Google Scholar 

  13. Thomas, A.W., Heekeren, H.R., Müller, K.R., et al.: Analyzing neuroimaging data through recurrent deep learning models. arXiv preprint arXiv:1810.09945 (2018)

  14. Uğurbil, K., Xu, J., Auerbach, E.J., et al.: Pushing spatial and temporal resolution for functional and diffusion mri in the human connectome project. Neuroimage 80, 80–104 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Samek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thomas, A.W., Müller, KR., Samek, W. (2019). Deep Transfer Learning for Whole-Brain FMRI Analyses. In: Zhou, L., et al. OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. OR 2.0 MLCN 2019 2019. Lecture Notes in Computer Science(), vol 11796. Springer, Cham. https://doi.org/10.1007/978-3-030-32695-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32695-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32694-4

  • Online ISBN: 978-3-030-32695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics