Skip to main content

Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11796))

Abstract

Upcoming robotic interventions for endovascular procedures can significantly reduce the high radiation exposure currently endured by surgeons. Robotically driven guidewires replace manual insertion and leave the surgeon the task of planning optimal trajectories based on segmentation of associated risk structures. However, such a pipeline brings new challenges. While Deep learning based segmentation such as U-Net can achieve outstanding Dice scores, it fails to provide suitable results for trajectory planning in annotation scarce environments. We propose a preoperative pipeline featuring a shape regularized U-Net that extracts coherent anatomies from pixelwise predictions. It uses Rapidly-exploring Random Trees together with convex optimization for locally optimal planning. Our experiments on two publicly available data sets evaluate the complete pipeline. We show the benefits of our approach in a functional evaluation including both segmentation and planning metrics: While we achieve comparable Dice, Hausdorff distances and planning metrics such as success rate of motion planning algorithms are significantly better than U-Net.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  2. Ganet, F., et al.: Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci. Rep. 5 (2015). Article number: 18593

    Google Scholar 

  3. Chi, W., et al.: Trajectory optimization of robot-assisted endovascular catheterization with reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3875–3881, October 2018

    Google Scholar 

  4. Azizi, A., Tremblay, C., Martel, S.: Trajectory planning for vascular navigation from 3D angiography images and vessel centerline data. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6, July 2017

    Google Scholar 

  5. Fauser, J., Stenin, I., Kristin, J., Klenzner, T., Schipper, J., Mukhopadhyay, A.: Optimizing clearance of bézier spline trajectories for minimally-invasive surgery. In: Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, Shenzen, China, 13–17 October 2019. Springer, Cham (2019)

    Google Scholar 

  6. Petitjean, C.: Segmentation of THoracic Organs at Risk in CT images. In: Proceedings of the 2019 Challenge on Segmentation of THoracic Organs at Risk in CT Images (SegTHOR 2019), vol. 2348 (2019)

    Google Scholar 

  7. Fauser, J., et al.: Toward an automatic preoperative pipeline for image-guided temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 14(6), 967–976 (2019)

    Article  Google Scholar 

  8. Tack, A., Mukhopadhyay, A., Zachow, S.: Knee menisci segmentation using convolutional neural networks: data from the osteoarthritis initiative. Osteoarthritis Cartilage 26(5), 680–688 (2018)

    Article  Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  11. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  12. Fauser, J., Sakas, G., Mukhopadhyay, A.: Planning nonlinear access paths for temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 13(5), 637–646 (2018)

    Article  Google Scholar 

  13. Schulman, J., et al.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014)

    Article  Google Scholar 

  14. Zhuang, X., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. CoRR abs/1902.07880 (2019)

    Google Scholar 

  15. Valette, S., Chassery, J.M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum 23, 381–390 (2004)

    Article  Google Scholar 

  16. Kirschner, M.: The probabilistic active shape model: from model construction to flexible medical image segmentation. Ph.D. thesis, TU Darmstadt (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fauser, J., Fuchs, M., Ghazy, A., Dorweiler, B., Mukhopadhyay, A. (2019). Preoperative Planning for Guidewires Employing Shape-Regularized Segmentation and Optimized Trajectories. In: Zhou, L., et al. OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. OR 2.0 MLCN 2019 2019. Lecture Notes in Computer Science(), vol 11796. Springer, Cham. https://doi.org/10.1007/978-3-030-32695-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32695-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32694-4

  • Online ISBN: 978-3-030-32695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics