Skip to main content

Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI Across Sites

  • Conference paper
  • First Online:
  • 899 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11796))

Abstract

Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI, and are a marker of cerebral small vessel disease. Most studies use time-consuming and subjective visual scoring to assess these structures. Recently, automated methods to quantify enlarged perivascular spaces have been proposed. Most of these methods have been evaluated only in high resolution scans acquired in controlled research settings. We evaluate and compare two recently published automated methods for the quantification of enlarged perivascular spaces in 76 clinical scans acquired from 9 different scanners. Both methods are neural networks trained on high resolution research scans and are applied without fine-tuning the networks’ parameters. By adapting the preprocessing of clinical scans, regions of interest similar to those computed from research scans can be processed. The first method estimates only the number of PVS, while the second method estimates simultaneously also a high resolution attention map that can be used to detect and segment PVS. The Pearson correlations between visual and automated scores of enlarged perivascular spaces were higher with the second method. With this method, in the centrum semiovale, the correlation was similar to the inter-rater agreement, and also similar to the performance in high resolution research scans. Results were slightly lower than the inter-rater agreement for the hippocampi, and noticeably lower in the basal ganglia. By computing attention maps, we show that the neural networks focus on the enlarged perivascular spaces. Assessing the burden of said structures in the centrum semiovale with the automated scores reached a satisfying performance, could be implemented in the clinic and, e.g., help predict the bleeding risk related to cerebral amyloid angiopathy.

F. Dubost and M. Dünnwald—Equal contribution.

S. Oeltze-Jafra and M. de Bruijne—Equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adams, H.H., et al.: Rating method for dilated Virchow-Robin spaces on magnetic resonance imaging. Stroke 44(6), 1732–1735 (2013)

    Article  Google Scholar 

  2. Boespflug, E.L., et al.: MR imaging-based multimodal autoidentification of perivascular spaces (mMAPS): automated morphologic segmentation of enlarged perivascular spaces at clinical field strength. Radiology 286(2), 632–642 (2017)

    Article  Google Scholar 

  3. Charidimou, A., et al.: MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology 88(12), 1157–1164 (2017)

    Article  Google Scholar 

  4. Dubost, F., et al.: Enlarged perivascular spaces in brain MRI: automated quantification in four regions. NeuroImage 185, 534–544 (2019)

    Article  Google Scholar 

  5. Dubost, F., et al.: Weakly Supervised Object Detection with 2D and 3D Regression Neural Networks. arXiv preprint arXiv:1906.01891 (2019)

  6. Dubost, F., et al.: 3D regression neural network for the quantification of enlarged perivascular spaces in brain MRI. Med. Image Anal. 51, 89–100 (2019)

    Article  Google Scholar 

  7. Ikram, M.A., et al.: The Rotterdam Study: 2018 update on objectives, design and main results. Eur. J. Epidemiol. 32(9), 807–850 (2017)

    Article  MathSciNet  Google Scholar 

  8. Potter, G.M., et al.: Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc. Dis. 39(3–4), 224–231 (2015)

    Article  Google Scholar 

  9. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  10. Sudre, C.H., et al.: 3D multirater RCNN for multimodal multiclass detection and characterisation of extremely small objects. In: MIDL 2019 (2018)

    Google Scholar 

  11. van Wijnen, K.M., et al.: Automated lesion detection by regressing intensity-based distance with a neural network. In: MICCAI (2019)

    Google Scholar 

  12. Wilson, D., et al.: Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet Neurol. 17(6), 539–547 (2018)

    Article  Google Scholar 

  13. Zhang, J., Gao, Y., Park, S.H., Zong, X., Lin, W., Shen, D.: Segmentation of perivascular spaces using vascular features and structured random forest from 7T MR image. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 61–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_8

    Chapter  Google Scholar 

Download references

Acknowledgements

This work received funding from the Netherlands Organisation for Health Research and Development (ZonMw - Project 104003005) and the federal state of Saxony-Anhalt, Germany (Project I 88).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian Dubost or Marleen de Bruijne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubost, F. et al. (2019). Automated Quantification of Enlarged Perivascular Spaces in Clinical Brain MRI Across Sites. In: Zhou, L., et al. OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. OR 2.0 MLCN 2019 2019. Lecture Notes in Computer Science(), vol 11796. Springer, Cham. https://doi.org/10.1007/978-3-030-32695-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32695-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32694-4

  • Online ISBN: 978-3-030-32695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics